A central goal of systems neuroscience is to characterize the transformation of sensory input to spiking output in single neurons. This problem is complicated by the large dimensionality of the inputs. To cope with this problem, previous methods have estimated simplified versions of a generic linear-nonlinear (LN) model and required, in most cases, stimuli with constrained statistics.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
June 2010
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainties. This paper proposes a novel inference mechanism for an interval type-2 Takagi-Sugeno-Kang fuzzy logic control system (IT2 TSK FLCS) when antecedents are type-2 fuzzy sets and consequents are crisp numbers (A2-C0). The proposed inference mechanism has a closed form which makes it more feasible to analyze the stability of this FLCS.
View Article and Find Full Text PDFThe response of visual cells is a nonlinear function of their stimuli. In addition, an increasing amount of evidence shows that visual cells are optimized to process natural images. Hence, finding good nonlinear models to characterize visual cells using natural stimuli is important.
View Article and Find Full Text PDF