Publications by authors named "Jerry F Gelineau"

Hypothermic machine perfusion (HMP) for the preservation of kidneys, recovered from extended criteria organ donors (ECDs), presents the opportunity for assessing ex vivo parameters that may have value in predicting postimplantation organ viability. Organ perfusion and vascular resistance are the parameters most frequently cited as the basis for the decision to use or discard a donor kidney. The limitation of these measures is emphasized by the observation that a significant percentage of ECD kidneys with poor perfusion parameters can provide life-sustaining function after transplantation.

View Article and Find Full Text PDF

Background: A reliable, portable, cost effective device for perfusion preservation of donor organs remains elusive. A portable, organ perfusion device design for hypothermic, machine perfusion (HMP) that successfully supported rodent kidneys for 24 hours was evaluated in canine kidneys.

Material/methods: Freshly recovered rodent and canine kidneys were subjected to 24 hours of HMP or static storage (SS).

View Article and Find Full Text PDF

The spatial distribution of neurodegeneration in brains is difficult to visualize when working from 2-D serial slices. In studies where repetitive operant behavior measurements are made over several weeks following organic solvent exposure, definitive evidence of degeneration in brain structures may have been significantly cleared by the time the tissue is prepared histologically. The only remaining evidence that injury has occurred may be nothing more than neuronal and cellular debris.

View Article and Find Full Text PDF

A prototype design of a portable, pulsatile, perfusion preservation device based on a novel application of fluidics technology was tested to evaluate its ability to oxygenate preservation solution and to examine the relationship between organ resistance, perfusion pressure, and perfusion flow characteristics. The effects of organ resistance on pulse rate, perfusion pressure, and perfusion flow were modeled. Interstitial PO2 in canine hearts stored at 4 degrees C for 12 hours in the fluidics device (n = 5) and in static hypothermic storage (n = 5) was also compared.

View Article and Find Full Text PDF

Background: Technology that can implement the basic requirements for successful organ preservation in a portable configuration has yet to be realized.

Methods: This work evaluates kidney preservation in a new class of portable organ preservation technology based on fluidics principles. During hypothermic pulsatile perfusion preservation (HPPP), oxygen consumption, renal vascular resistance (RVR), pH, pCO2, and perfusion pressure were measured.

View Article and Find Full Text PDF