Publications by authors named "Jerry E Manning"

The CC chemokine ligand 2 (CCL2) and CC chemokine receptor 2 (CCR2) are expressed in the heart after infection with Trypanosoma cruzi, suggesting that they play an important role in host defense. Infection of CCR2-deficient (CCR2(-/-)) mice with T. cruzi resulted in increased cardiac parasitism, yet the severity of cardiac inflammation was not affected.

View Article and Find Full Text PDF

Infection of susceptible mice with the Colombiana strain of Trypanosoma cruzi results in an orchestrated expression of chemokines and chemokine receptors within the heart that coincides with parasite burden and cellular infiltration. CC chemokine receptor 5 (CCR5) is prominently expressed during both acute and chronic disease, suggesting a role in regulating leukocyte trafficking and accumulation within the heart following T. cruzi infection.

View Article and Find Full Text PDF

The expression of chemokines within the heart during experimental infection of susceptible mice with the Colombiana strain of Trypanosoma cruzi was characterized in an attempt to determine a functional role for these molecules in both host defense and disease. Analysis of chemokine transcripts revealed that CXC chemokine ligand 9 (CXCL9) and CXCL10, as well as CC chemokine ligand 2 (CCL2) and CCL5, were prominently expressed during acute disease, whereas transcripts for CXCL9, CXCL10, and CCL5 remained elevated during chronic infection. Inflammatory macrophages present within the heart were the primary cellular source of these chemokines following T.

View Article and Find Full Text PDF

Intracerebral infection of mice with mouse hepatitis virus, a member of the Coronaviridae family, reproducibly results in an acute encephalomyelitis that progresses to a chronic demyelinating disease. The ensuing neuropathology during the chronic stage of disease is primarily immune mediated and similar to that of the human demyelinating disease multiple sclerosis. Secretion of chemokines within the CNS signals the infiltration of leukocytes, which results in destruction of white matter and neurological impairment.

View Article and Find Full Text PDF

How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the CNS.

View Article and Find Full Text PDF

In the present study, we have produced recombinant paraflagellar rod proteins (PFR) and report their use for successful vaccination of mice against Trypanosoma cruzi. This protection is associated with a highly polarized type 1 cytokine production profile. Additionally, we have analyzed the gene sequence encoding PFR-2 to determine the degree of conservation among seven highly diverse strains of T.

View Article and Find Full Text PDF

Sera and peripheral blood mononuclear cells (PBMC) from patients displaying different clinical symptoms as well as from normal uninfected individuals (NI) were used to evaluate the humoral and cellular responses of Chagas' disease patients to Trypanosoma cruzi-derived paraflagellar rod proteins (PFR). Our results show that sera from both asymptomatic Chagas' disease patients (ACP) and cardiac Chagas' disease patients (CCP) have higher levels of antibodies to PFR than sera from NI. Immunoglobulin G1 (IgG1) and IgG3 were the main Ig isotypes that recognized PFR.

View Article and Find Full Text PDF

Our previous studies show that in mice immunized with the paraflagellar rod (PFR) proteins of Trypanosoma cruzi protective immunity against this protozoan parasite requires MHC class I-restricted T cell function. To determine whether PFR-specific CD8+ T cell subsets are generated during T. cruzi infection, potential CTL targets in the PFR proteins were identified by scanning the amino acid sequences of the four PFR proteins for regions of 8-10 amino acids that conform to predicted MHC class I H-2b binding motifs.

View Article and Find Full Text PDF