Pharmacological reactivation of the tumor suppressor p53 remains a key challenge for the treatment of cancer. Acetylation Targeting Chimera (AceTAC), a novel technology is previously reported that hijacks lysine acetyltransferases p300/CBP to acetylate the p53Y220C mutant. However, p300/CBP are the only acetyltransferases harnessed for AceTAC development to date.
View Article and Find Full Text PDFOne hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFThe incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die.
View Article and Find Full Text PDFJ Cell Physiol
September 2024
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting.
View Article and Find Full Text PDFEffective immunity requires a large, diverse naive T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we addressed how S1P enables T cell survival and the implications for patients treated with S1PR1 antagonists.
View Article and Find Full Text PDFDiverse developmental signals and pro-death stresses converge on the regulation of the mitochondrial pathway of apoptosis. BAX, a proapoptotic BCL-2 effector, directly forms proteolipid pores in the outer mitochondrial membrane to activate the mitochondrial pathway of apoptosis. BAX is a viable pharmacological target for various human diseases, and increasing efforts have been made to study the molecular regulation of BAX while identifying small molecules selectively targeting BAX.
View Article and Find Full Text PDFDiverse developmental signals and pro-death stresses converge on regulation of the mitochondrial pathway of apoptosis. BAX, a pro-apoptotic BCL-2 effector, directly forms proteolipid pores in the outer mitochondrial member to activate the mitochondrial pathway of apoptosis. BAX is a viable pharmacological target for various human diseases, and increasing efforts have been made to study the molecular regulation of BAX and identify small molecules selectively targeting BAX.
View Article and Find Full Text PDFEffective immunity requires a large, diverse naïve T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we address how S1P enables T cell survival, and the implications for patients treated with S1PR1 antagonists.
View Article and Find Full Text PDFApoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions.
View Article and Find Full Text PDFMuch more than the "powerhouse" of the cell, mitochondria have emerged as critical hubs involved in metabolism, cell death, inflammation, signaling, and stress responses. To open our mitochondria focus issue, we asked several scientists to share the unanswered questions, emerging themes, and topics of investigation that excite them.
View Article and Find Full Text PDFTumors exhibit enhancer reprogramming compared to normal tissue. The etiology is largely attributed to cell-intrinsic genomic alterations. Here, using freshly resected primary CRC tumors and patient-matched adjacent normal colon, we find divergent epigenetic landscapes between CRC tumors and cell lines.
View Article and Find Full Text PDFThe food colorant Red 40 is an environmental risk factor for colitis development in mice with increased expression of interleukin (IL)-23. This immune response is mediated by CD4 T cells, but mechanistic insights into how these CD4 T cells trigger and perpetuate colitis have remained elusive. Here, using single-cell transcriptomic analysis, we found that several CD4 T-cell subsets are present in the intestines of colitic mice, including an interferon (IFN)-γ-producing subset.
View Article and Find Full Text PDFDevelopmental, homeostatic, and pharmacological pro-apoptotic signals converge by activating the BCL-2 family member BAX. Studies investigating molecular regulation of BAX are commonly limited to methodologies measuring endpoint phenotypes and do not assess activation of monomeric BAX. Here, we present FLAMBE, a fluorescence polarization ligand assay for monitoring BAX early activation, that measures activation-induced release of a peptide probe in real time.
View Article and Find Full Text PDFPluripotent stem-cell-derived cardiomyocytes (PSC-CMs) provide an unprecedented opportunity to study human heart development and disease, but they are functionally and structurally immature. Here, we induce efficient human PSC-CM (hPSC-CM) maturation through metabolic-pathway modulations. Specifically, we find that peroxisome-proliferator-associated receptor (PPAR) signaling regulates glycolysis and fatty acid oxidation (FAO) in an isoform-specific manner.
View Article and Find Full Text PDFBAX activation techniques are crucial to studying the intrinsic pathway of apoptosis- thousands of pro-apoptotic signals converge on BAX activation. Current methodologies are predominantly limited to membrane permeabilization studies, which assess endpoint functionality of oligomeric BAX, but overlook early activation steps of cytosolic BAX. Here we detail FLAMBE: a fluorescence polarization ligand assay for monitoring BAX early-activation in solution.
View Article and Find Full Text PDFTNF ligation of TNF receptor 1 (TNFR1) promotes either inflammation and cell survival by (a) inhibiting RIPK1's death-signaling function and activating NF-κB or (b) causing RIPK1 to associate with the death-inducing signaling complex to initiate apoptosis or necroptosis. The cellular source of TNF that results in RIPK1-dependent cell death remains unclear. To address this, we employed in vitro systems and murine models of T cell-dependent transplant or tumor rejection in which target cell susceptibility to RIPK1-dependent cell death could be genetically altered.
View Article and Find Full Text PDFMammalian red blood cells (RBCs), which primarily contain hemoglobin, exemplify an elaborate maturation process, with the terminal steps of RBC generation involving extensive cellular remodeling. This encompasses alterations of cellular content through distinct stages of erythroblast maturation that result in the expulsion of the nucleus (enucleation) followed by the loss of mitochondria and all other organelles and a transition to anaerobic glycolysis. Whether there is any link between erythroid removal of the nucleus and the function of any other organelle, including mitochondria, remains unknown.
View Article and Find Full Text PDFThe ancient, dynamic, and multifaceted functions of the mitochondrial network are essential for organismal homeostasis and contribute to numerous human diseases. As central hubs for metabolism, ion transport, and multiple macromolecular synthesis pathways, mitochondria establish and control extensive signaling networks to ensure cellular survival. In this review, we explore how these same mitochondrial functions also participate in the control of regulated cell death (RCD).
View Article and Find Full Text PDFHigh-throughput cytostatic and cell death assays are a critical component of pharmacological screens and mechanism-based interrogations into cellular biology. We developed a method for single-cell and population-level analyses using real-time kinetic labeling (abbreviated "SPARKL") with non-toxic fluorescent probes and high-content live-cell imagers. The protocols herein detail the steps, specifics, and suggested utilization of the SPARKL method within several "label-and-go" zero-handling workflows.
View Article and Find Full Text PDFIn June of 2019, the International Cell Death Society (ICDS) held its 25th anniversary meeting in New York City at the Icahn School of Medicine at Mount Sinai organized by Drs. Richard A. Lockshin (St.
View Article and Find Full Text PDFQuantifying cytostatic and cytotoxic outcomes of cells responding to perturbagens is an essential component of mechanism-based studies and pharmacological screening approaches. We recently described an easy and versatile method for single-cell and population-level analyses using real-time kinetic labeling (SPARKL). This technology enables zero-handling, non-disruptive protocols for integrating proliferation profiles with cell death mechanisms, along with advanced mathematics for robust analyses.
View Article and Find Full Text PDF