Publications by authors named "Jerry Davison"

Background: Aberrant DNA methylation is known to occur in patients with acute myeloid leukemia (AML), whereas methylation signatures and prognostic markers have been proposed. The objective of the current study was to evaluate all CpG sites of the genome and identify prognostic methylation markers for overall survival in patients with AML with normal karyotype (AML-NK).

Methods: AML-NK samples from 7 SWOG trials were analyzed using a novel genome-wide approach called "CHARMcox" (comprehensive high-throughput array-based relative methylation analysis combined with the Cox proportional hazards model) controlling for known clinical covariates.

View Article and Find Full Text PDF

Colorectal cancer (CRC) results from the accumulation of gene mutations and epigenetic alterations in colon epithelial cells, which promotes CRC formation through deregulating signaling pathways. One of the most commonly deregulated signaling pathways in CRC is the transforming growth factor β (TGF-β) pathway. Importantly, the effects of TGF-β signaling inactivation in CRC are modified by concurrent mutations in the tumor cell, and these concurrent mutations determine the ultimate biological effects of impaired TGF-β signaling in the tumor.

View Article and Find Full Text PDF

To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers.

View Article and Find Full Text PDF

To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g.

View Article and Find Full Text PDF

Aberrant DNA methylation is known to occur in cancer, including hematological malignancies such as acute myeloid leukemia (AML). However, less is known about whether specific methylation profiles characterize specific subcategories of AML. We examined this issue by using comprehensive high-throughput array-based relative methylation analysis (CHARM) to compare methylation profiles among patients in different AML cytogenetic risk groups.

View Article and Find Full Text PDF

Pure populations of quiescent yeast can be obtained from stationary phase cultures that have ceased proliferation after exhausting glucose and other carbon sources from their environment. They are uniformly arrested in the G1 phase of the cell cycle, and display very high thermo-tolerance and longevity. We find that G1 arrest is initiated before all the glucose has been scavenged from the media.

View Article and Find Full Text PDF

To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing.

View Article and Find Full Text PDF

Adipose tissue plays a role in obesity-related cancers via increased production of inflammatory factors, steroid hormones, and altered adipokines. The impact of weight loss on adipose tissue gene expression may provide insights into pathways linking obesity with cancer risk. We conducted an ancillary study within a randomized trial of diet, exercise, or combined diet + exercise versus control among overweight/obese postmenopausal women.

View Article and Find Full Text PDF

G9a and GLP are conserved protein methyltransferases that play key roles during mammalian development through mono- and dimethylation of histone H3 Lys 9 (H3K9me1/2), modifications associated with transcriptional repression. During embryogenesis, large H3K9me2 chromatin territories arise that have been proposed to reinforce lineage choice by affecting high-order chromatin structure. Here we report that in adult human hematopoietic stem and progenitor cells (HSPCs), H3K9me2 chromatin territories are absent in primitive cells and are formed de novo during lineage commitment.

View Article and Find Full Text PDF

MYC-induced DNA damage is exacerbated in WRN-deficient cells, leading to replication stress and accelerated cellular senescence. To determine whether WRN deficiency impairs MYC-driven tumor development, we used both xenograft and autochthonous tumor models. Conditional silencing of WRN expression in c-MYC overexpressing non-small cell lung cancer xenografts impaired both tumor establishment and tumor growth.

View Article and Find Full Text PDF

Background: Estrogen receptor (ER) remains one of the most important biomarkers for breast cancer subtyping and prognosis, and comparative genome hybridization has greatly contributed to the understanding of global genetic imbalance. The authors used single-nucleotide polymorphism (SNP) arrays to compare overall copy number aberrations (CNAs) as well as loss of heterozygosity (LOH) of the entire human genome in ER-positive and ER-negative breast carcinomas.

Methods: DNA was extracted from frozen tumor sections of 21 breast carcinoma specimens and analyzed with a proprietary 50K XbaI SNP array.

View Article and Find Full Text PDF
Article Synopsis
  • TAL1/SCL is a key regulator of blood cell development that causes different outcomes in erythroid versus T-cell lineages, promoting cell differentiation in the former and cancer in the latter.
  • Using ChIP sequencing and gene expression profiling, researchers discovered that TAL1 binds to different genomic regions in erythroid cells compared to leukaemic T cells, with a specific preference for certain DNA motifs in T cells.
  • The study emphasizes how the surrounding cellular environment influences how transcription factors like TAL1 interact with genes, shedding light on TAL1's role in blocking differentiation and contributing to T-cell cancer development.
View Article and Find Full Text PDF

Recent studies have demonstrated that MyoD initiates a feed-forward regulation of skeletal muscle gene expression, predicting that MyoD binds directly to many genes expressed during differentiation. We have used chromatin immunoprecipitation and high-throughput sequencing to identify genome-wide binding of MyoD in several skeletal muscle cell types. As anticipated, MyoD preferentially binds to a VCASCTG sequence that resembles the in vitro-selected site for a MyoD:E-protein heterodimer, and MyoD binding increases during differentiation at many of the regulatory regions of genes expressed in skeletal muscle.

View Article and Find Full Text PDF

Background: The composition of the individual eukaryote's genome and its variation within a species remain poorly defined. Even for a sequenced genome such as that of the model plant Arabidopsis thaliana accession Col-0, the large arrays of heterochromatic repeats are incompletely sequenced, with gaps of uncertain size persisting in them.

Results: Using geographically separate populations of A.

View Article and Find Full Text PDF

The joining of different genomes in allotetraploids played a major role in plant evolution, but the molecular implications of this event are poorly understood. In synthetic allotetraploids of Arabidopsis and Cardaminopsis arenosa, we previously demonstrated the occurrence of frequent gene silencing. To explore the involvement of epigenetic phenomena, we investigated the occurrence and effects of DNA methylation changes.

View Article and Find Full Text PDF