The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine.
View Article and Find Full Text PDFA direct method to express the center of pressure (CoP) measured by an insole pressure sensor system (IPSS) into a known coordinate system measured by motion tracking equipment is presented. A custom probe was constructed with reflective markers to allow its tip to be precisely tracked with motion tracking equipment. This probe was utilized to activate individual sensors on an IPSS that was placed in a shoe fitted with reflective markers used to establish a local shoe coordinate system.
View Article and Find Full Text PDFWhile previous studies have investigated the effect of shoe-surface interaction on injury risk, few studies have examined the effect of rotational stiffness of the shoe. The hypothesis of the current study was that ankles externally rotated to failure in shoes with low rotational stiffness would allow more talus eversion than those in shoes with a higher rotational stiffness, resulting in less severe injury. Twelve (six pairs) cadaver lower extremities were externally rotated to gross failure while positioned in 20 deg of pre-eversion and 20 deg of predorsiflexion by fixing the distal end of the foot, axially loading the proximal tibia, and internally rotating the tibia.
View Article and Find Full Text PDFShoe-surface interface characteristics have been implicated in the high incidence of ankle injuries suffered by athletes. Yet, the differences in rotational stiffness among shoes may also influence injury risk. It was hypothesized that shoes with different rotational stiffness will generate different patterns of ankle ligament strain.
View Article and Find Full Text PDFWhile high ankle sprains are often clinically ascribed to excessive external foot rotation, no experimental study documents isolated anterior tibiofibular ligament (ATiFL) injury under this loading. We hypothesized that external rotation of a highly everted foot would generate ATiFL injury, in contrast to deltoid ligament injury from external rotation of a neutral foot. Twelve (six pairs) male cadaveric lower extremity limbs underwent external foot rotation until gross failure.
View Article and Find Full Text PDFExternal rotation of the foot has been implicated in high ankle sprains. Recent studies by this laboratory, and others, have suggested that torsional traction characteristics of the shoe-surface interface may play a role in ankle injury. While ankle injuries most often involve damage to ligaments due to excessive strains, the studies conducted by this laboratory and others have largely used surrogate models of the lower extremity to determine shoe-surface interface characteristics based on torque measures alone.
View Article and Find Full Text PDF