Publications by authors named "Jeronimo Miranda-Rodriguez"

Article Synopsis
  • Mutations in the gene responsible for branchio-oto-renal syndrome (BOR) cause multi-organ malformations in humans and similar effects in animal models.
  • Researchers studied the zebrafish posterior lateral-line primordium to investigate the role of the Eya1 gene in organ development.
  • Their findings revealed that the loss of Eya1 reduces specific chemokine receptor expression, disrupting cell movement and leading to abnormal formation of the lateral line, which suggests that issues with cell movement contribute to organ malformations in BOR.
View Article and Find Full Text PDF

Collective cell rotations are widely used during animal organogenesis. Theoretical and in vitro studies have conceptualized rotating cells as identical rigid-point objects that stochastically break symmetry to move monotonously and perpetually within an inert environment. However, it is unclear whether this notion can be extrapolated to a natural context, where rotations are ephemeral and heterogeneous cellular cohorts interact with an active epithelium.

View Article and Find Full Text PDF

Most plane-polarized tissues are formed by identically oriented cells [1, 2]. A notable exception occurs in the vertebrate vestibular system and lateral-line neuromasts, where mechanosensory hair cells orient along a single axis but in opposite directions to generate bipolar epithelia [3-5]. In zebrafish neuromasts, pairs of hair cells arise from the division of a non-sensory progenitor [6, 7] and acquire opposing planar polarity via the asymmetric expression of the polarity-determinant transcription factor Emx2 [8-11].

View Article and Find Full Text PDF

Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics.

View Article and Find Full Text PDF