Publications by authors named "Jeronimo Buencuerpo"

Multi-junction solar cells constitute the main source of power for space applications. However, exposure of solar cells to the space radiation environment significantly degrades their performance across the mission lifetime. Here, we seek to improve the radiation hardness of the triple junction solar cell, GaInP/Ga(In)As/Ge, by decreasing the thickness of the more sensitive middle junction.

View Article and Find Full Text PDF

Ultra-thin photovoltaics offer the potential for increasing efficiency while minimizing costs. However, a suitable light trapping strategy is needed to reach the optically thick regime for otherwise thin-film structures. III-V materials can benefit from simple adjacent light trapping structures, if correctly designed.

View Article and Find Full Text PDF

Electrical contacts on the top surface of solar cells and light emitting diodes cause shadow losses. The phenomenon of extraordinary optical transmission through arrays of subwavelength holes suggests the possibility of engineering such contacts to reduce the shadow using plasmonics, but resonance effects occur only at specific wavelengths. Here we describe instead a broadband effect of enhanced light transmission through arrays of subwavelength metallic wires, due to the fact that, in the absence of resonances, metal wires asymptotically tend to invisibility in the small size limit regardless of the fraction of the device area taken up by the contacts.

View Article and Find Full Text PDF

A series of photonic crystal structures are optimized for a photon enhanced thermionic emitter. With realistic parameter values to describe a p-type GaAs device we find an efficiency above 10%. The light-trapping structures increases the performance by 2% over an optimal bilayer anti-reflective coating.

View Article and Find Full Text PDF

A hybrid approach for light trapping using photonic crystal nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra thin film as a substrate is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP).

View Article and Find Full Text PDF

Autopsy has been one of the most important techniques for the development of modern medicine, mainly during the nineteenth century and the first half of last century. However, in the last few years, the number of autopsies performed in hospitals has dramatically decreased all over the world. This loss of interest can be attributed both to important advances in other diagnostic and therapeutic techniques and to the fear of malpractice suits.

View Article and Find Full Text PDF