Publications by authors named "Jerome Wong-Ng"

Recent advances in organoid and organ-on-chip (OoC) technologies offer an unprecedented level of tissue mimicry. These models can recapitulate the diversity of cellular composition, 3D organization, and mechanical stimulation. These approaches are intensively used to understand complex diseases.

View Article and Find Full Text PDF

The ability to block gene expression in bacteria with the catalytically inactive mutant of Cas9, known as dCas9, is quickly becoming a standard methodology to probe gene function, perform high-throughput screens, and engineer cells for desired purposes. Yet, we still lack a good understanding of the design rules that determine on-target activity for dCas9. Taking advantage of high-throughput screening data, we fit a model to predict the ability of dCas9 to block the RNA polymerase based on the target sequence, and validate its performance on independently generated datasets.

View Article and Find Full Text PDF

Bacterial chemotaxis, the directed migration of bacteria in a gradient of chemoattractant, is one of the most well-studied and well-understood processes in cell biology. On the other hand, bacterial thermotaxis, the directed migration of bacteria in a gradient of temperature, is understood relatively poorly, with somewhat conflicting reports by different groups. One of the reasons for that is the relative technical difficulty of the generation of well-defined gradients of temperature that are sufficiently steep to elicit readily detectable thermotaxis.

View Article and Find Full Text PDF

Bacterial chemotaxis, the directed movement of cells along gradients of chemoattractants, is among the best-characterized subjects in molecular biology, but much less is known about its physiological roles. It is commonly seen as a starvation response when nutrients run out, or as an escape response from harmful situations. Here we identify an alternative role of chemotaxis by systematically examining the spatiotemporal dynamics of Escherichia coli in soft agar.

View Article and Find Full Text PDF

Soaring birds often rely on ascending thermal plumes (thermals) in the atmosphere as they search for prey or migrate across large distances. The landscape of convective currents is rugged and shifts on timescales of a few minutes as thermals constantly form, disintegrate or are transported away by the wind. How soaring birds find and navigate thermals within this complex landscape is unknown.

View Article and Find Full Text PDF

Bacterial chemotaxis is a classical subject: our knowledge of its molecular pathway has grown very detailed, and experimental observations, as well as mathematical models of the dynamics of chemotactic populations, have a history of several decades. This should not lead to the conclusion that only minor details are left to be understood. Indeed, it is believed that bacterial chemotaxis is under selection for efficiency, yet the underlying functional forces remain largely unknown.

View Article and Find Full Text PDF

Evolution of biological sensory systems is driven by the need for efficient responses to environmental stimuli. A paradigm among prokaryotes is the chemotaxis system, which allows bacteria to navigate gradients of chemoattractants by biasing their run-and-tumble motion. A notable feature of chemotaxis is adaptation: after the application of a step stimulus, the bacterial running time relaxes to its pre-stimulus level.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotaxis plays a crucial role in how pathogenic Leptospira spp. infect hosts, but details on their motility regulation are limited.
  • Researchers created a library of random transposon mutants of L. interrogans, identifying a mutant with a gene disruption in a chemotaxis-related operon involving several key chemotaxis genes.
  • While the histidine kinase mutant was still motile and virulent, tests revealed its chemotaxis was reduced, especially in its ability to reverse direction compared to the normal strain, indicating the operon is vital for effective movement toward chemical signals.
View Article and Find Full Text PDF

The quality of sensing and response to external stimuli constitutes a basic element in the selective performance of living organisms. Here we consider the response of Escherichia coli to chemical stimuli. For moderate amplitudes, the bacterial response to generic profiles of sensed chemicals is reconstructed from its response function to an impulse, which then controls the efficiency of bacterial motility.

View Article and Find Full Text PDF

Plasmids are extrachromosomal DNA molecules which code for their own replication. We previously reported a setup using genes coding for fluorescent proteins of two colors that allowed us, using a simple model, to extract the plasmid-copy-number noise in a monoclonal population of bacteria [J. Wong Ng, Phys.

View Article and Find Full Text PDF

Plasmids are extra chromosomal DNA that can confer to their hosts' supplementary characteristics such as antibiotic resistance. Plasmids code for their copy number through their own replication frequency. Even though the biochemical networks underlying the plasmid copy number (PCN) regulation processes have been studied and modeled, no measurement of the heterogeneity in PCN within a whole population has been done.

View Article and Find Full Text PDF