Publications by authors named "Jerome Vicogne"

The development of fast ligation chemistries for the site-specific modification of proteins has become a major focus in chemical biology. We describe steps for preparing an oxalyl thioester precursor in the form of an N-oxalyl perhydro-1,2,5-dithiazepine handle, i.e.

View Article and Find Full Text PDF

Macrostomum lignano, a marine free-living flatworm, has emerged as a potent invertebrate model in developmental biology for studying stem cells, germline, and regeneration processes. In recent years, many tools have been developed to manipulate this worm and to facilitate genetic modification. RNA interference is currently the most accessible and direct technique to investigate gene functions.

View Article and Find Full Text PDF

Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors.

View Article and Find Full Text PDF

Prostate cancer is a major public health concern and one of the most prevalent forms of cancer worldwide. The definition of altered signaling pathways implicated in this complex disease is thus essential. In this context, abnormal expression of the receptor of Macrophage Colony-Stimulating Factor-1 (M-CSF or CSF-1) has been described in prostate cancer cells.

View Article and Find Full Text PDF

The discovery of novel antihelmintic molecules to combat the development and spread of schistosomiasis, a disease caused by several flatworm species, mobilizes significant research efforts worldwide. With a limited number of biochemical assays for measuring the viability of adult worms, the antischistosomicidal activity of molecules is usually evaluated by a microscopic observation of worm mobility and/or integrity upon drug exposure. Even if these phenotypical assays enable multiple parameters analysis, they are often conducted during several days and need to be associated with image-based analysis to minimized subjectivity.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) is the natural ligand of the MET receptor tyrosine kinase. This ligand-receptor couple is essential for the maturation process of hepatocytes. Previously, the rational design of a synthetic protein based on the assembly of two K1 domains from HGF led to the production of a potent and stable MET receptor agonist.

View Article and Find Full Text PDF

The last two decades have witnessed the rise in power of chemical protein synthesis to the point where it now constitutes an established corpus of synthetic methods efficiently complementing biological approaches. One factor explaining this spectacular evolution is the emergence of a new class of chemoselective reactions enabling the formation of native peptide bonds between two unprotected peptidic segments, also known as native ligation reactions. In recent years, their application has fueled the production of homogeneous batches of large and highly decorated protein targets with a control of their composition at the atomic level.

View Article and Find Full Text PDF

Hepatocyte growth factor/scatter factor (HGF/SF) and its cognate receptor MET play several essential roles in embryogenesis and regeneration in postnatal life of epithelial organs such as the liver, kidney, lung, and pancreas, prompting a strong interest in harnessing HGF/SF-MET signalling for regeneration of epithelial organs after acute or chronic damage. The limited stability and tissue diffusion of native HGF/SF, however, which reflect the tightly controlled, local mechanism of action of the morphogen, have led to a major search of HGF/SF mimics for therapy. In this work, we describe the rational design, production, and characterization of K1K1, a novel minimal MET agonist consisting of two copies of the kringle 1 domain of HGF/SF in tandem orientation.

View Article and Find Full Text PDF

We show that latent oxalyl thioester surrogates are a powerful means to modify peptides and proteins in highly dilute conditions in purified aqueous media or in mixtures as complex as cell lysates. Designed to be shelf-stable reagents, they can be activated on demand to enable ligation reactions with peptide concentrations as low as a few hundred nM at rates approaching 30 M  s .

View Article and Find Full Text PDF

Background: Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential.

View Article and Find Full Text PDF

Hydrazone and oxime peptide ligations are catalyzed by arginine. The catalysis is assisted intramolecularly by the side-chain guanidinium group. Hydrazone ligation in the presence of arginine proceeds efficiently in phosphate buffer at neutral pH but is particularly powerful in bicarbonate/CO buffer.

View Article and Find Full Text PDF

SUMO-2 protein, SUMO-2 core domain, and the tail peptide corresponding to the first 14 residues were produced by chemical synthesis, and their secondary structures were analyzed by circular dichroism. The CD spectra of SUMO-2 and SUMO-2 core domain show distinct features and α-helical contents. In particular, the presence of the disordered tail in SUMO-2 lowers the α-helical content of the protein compared with SUMO-2 core domain and also explains the shift in the position of the minimum around 208 nm.

View Article and Find Full Text PDF

The control of cysteine reactivity is of paramount importance for the synthesis of proteins using the native chemical ligation (NCL) reaction. We report that this goal can be achieved in a traceless manner during ligation by appending a simple N-selenoethyl group to cysteine. While in synthetic organic chemistry the cleavage of carbon-nitrogen bonds is notoriously difficult, we describe that N-selenoethyl cysteine (SetCys) loses its selenoethyl arm in water under mild conditions upon reduction of its selenosulfide bond.

View Article and Find Full Text PDF

α-Gal syndrome (AGS) is a type of anaphylactic reaction to mammalian meat characterized by an immunoglobulin (Ig)E immune response to the oligosaccharide α-Gal (Galα1-3Galβ1-4GlcNAc-R). Tick bites seems to be a prerequisite for the onset of the allergic disease in humans, but the implication of non-tick parasites in α-Gal sensitization has also been deliberated. In the present study, we therefore evaluated the capacity of helminths (, , ), protozoa (), and parasitic fungi () to induce an immune response to α-Gal.

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTKs) are key regulators of cellular functions in metazoans. In vertebrates, RTKs are mostly activated by polypeptides but are not naturally sensitive to amino acids or light. Taking inspiration from Venus kinase receptors (VKRs), an atypical family of RTKs found in nature, we have transformed the human insulin (hIR) and hepatocyte growth factor receptor (hMET) into glutamate receptors by replacing their extracellular binding domains with the ligand-binding domain of metabotropic glutamate receptor type 2 (mGluR2).

View Article and Find Full Text PDF

One hallmark of protein chemical synthesis is its capacity to access proteins that living systems can hardly produce. This is typically the case for proteins harboring post-translational modifications such as ubiquitin or ubiquitin-like modifiers. Various methods have been developed for accessing polyubiquitin conjugates by semi- or total synthesis.

View Article and Find Full Text PDF

While the semi or total synthesis of ubiquitin or polyubiquitin conjugates has attracted a lot of attention the past decade, the preparation of small ubiquitin-like modifier (SUMO) conjugates is much less developed. We describe hereinafter some important molecular features to consider when preparing SUMO-2/3 conjugates by chemical synthesis using the native chemical ligation and extended methods. In particular, we clarify the role of the conserved cysteine residue on SUMO-2/3 domain stability and properties.

View Article and Find Full Text PDF

The receptor tyrosine kinase MET and its ligand, the Hepatocyte Growth Factor/Scattor Factor (HGF/SF), are essential to the migration, morphogenesis, and survival of epithelial cells. In addition, dysregulation of MET signaling has been shown to promote tumor progression and invasion in many cancers. Therefore, HGF/SF and MET are major targets for chemotherapies.

View Article and Find Full Text PDF

Objectives: The receptor tyrosine kinase MET is essential to embryonic development and organ regeneration. Its deregulation is associated with tumorigenesis. While MET gene amplification and mutations leading to MET self-activation concern only a few patients, a high MET level has been found in about half of the non-small cell lung cancers (NSCLCs) tested.

View Article and Find Full Text PDF

SUMOylation constitutes a major post-translational modification (PTM) used by the eukaryote cellular machinery to modulate protein interactions of the targeted proteins. The small ubiquitin-like modifier-1 (SUMO-1) features a central and conserved cysteine residue (Cys52) that is located in the hydrophobic core of the protein and in tight contact with Phe65, suggesting the occurrence of an S/π interaction. To investigate the importance of Cys52 on SUMO-1 thermal stability and biochemical properties, we produced by total chemical synthesis SUMO-1 or SUMO-1 Cys52Ala peptide-protein conjugates featuring a native isopeptidic bond between SUMO-1 and a peptide derived from p53 tumor suppressor protein.

View Article and Find Full Text PDF

The development of MET receptor agonists is an important goal in regenerative medicine, but is limited by the complexity and incomplete understanding of its interaction with HGF/SF (Hepatocyte Growth Factor/Scatter Factor). NK1 is a natural occurring agonist comprising the N-terminal (N) and the first kringle (K1) domains of HGF/SF. In the presence of heparin, NK1 can self-associate into a "head to tail" dimer which is considered as the minimal structural module able to trigger MET dimerization and activation whereas isolated K1 and N domains showed a weak or a complete lack of agonistic activity respectively.

View Article and Find Full Text PDF

Small ubiquitin-like modifier (SUMO) post-translational modification (PTM) of proteins has a crucial role in the regulation of important cellular processes. This protocol describes the chemical synthesis of functional SUMO-peptide conjugates. The two crucial stages of this protocol are the solid-phase synthesis of peptide segments derivatized by thioester or bis(2-sulfanylethyl)amido (SEA) latent thioester functionalities and the one-pot assembly of the SUMO-peptide conjugate by a sequential native chemical ligation (NCL)/SEA native peptide ligation reaction sequence.

View Article and Find Full Text PDF

The regulation of Plasmodium falciparum protein phosphatase type 1 (PfPP1) activity remains to be deciphered. Data from homologous eukaryotic type 1 protein phosphatases (PP1) suggest that several protein regulators should be involved in this essential process. One such regulator, named PfI2 based on its primary sequence homology with eukaryotic inhibitor 2 (I2), was recently shown to be able to interact with PfPP1 and to inhibit its phosphatase activity, mainly through the canonical 'RVxF' binding motif.

View Article and Find Full Text PDF

The capacity of many proteins to interact with natural or synthetic polyanions has been exploited for modulating their biological action. However, the polydispersity of these macromolecular polyanions as well as their poor specificity is a severe limitation to their use as drugs. An emerging trend in this field is the synthesis of homogeneous and well-defined polyanion-peptide conjugates, which act as bivalent ligands, with the peptide part bringing the selectivity of the scaffold.

View Article and Find Full Text PDF

Background: Receptor tyrosine kinases (RTK) form a family of transmembrane proteins widely conserved in Metazoa, with key functions in cell-to-cell communication and control of multiple cellular processes. A new family of RTK named Venus Kinase Receptor (VKR) has been described in invertebrates. The VKR receptor possesses a Venus Fly Trap (VFT) extracellular module, a bilobate structure that binds small ligands to induce receptor kinase activity.

View Article and Find Full Text PDF