Publications by authors named "Jerome Roche"

A search through the literature reveals that the vast majority of studies about aluminum anodizing were conducted at the macroscale (i.e., from cm up to m), while those focused on local anodizing (i.

View Article and Find Full Text PDF

Chemical systems do not allow the coupling of energy from several simple reactions to drive a subsequent reaction, which takes place in the same medium and leads to a product with a higher energy than the one released during the first reaction. Gibbs energy considerations thus are not favorable to drive e.g.

View Article and Find Full Text PDF

A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit.

View Article and Find Full Text PDF

In this contribution, a wireless method for the electrolytic sampling of heavy metals at special bismuth-modified particles is presented. For the first time, glassy carbon beads were asymmetrically modified with bismuth using bipolar electrochemistry. The resulting chemically asymmetric beads, so-called Janus particles, could be employed for the wireless electroaccumulation of heavy metal ions in the bismuth film.

View Article and Find Full Text PDF

Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion.

View Article and Find Full Text PDF

Bipolar electrochemistry has been recently explored for the modification of conducting micro- and nanoobjects with various surface layers. So far, it has been assumed that such processes should be carried out in low-conductivity electrolytes in order to be efficient. We report here the first bipolar electrochemistry experiment carried out in an ionic liquid, which by definition shows a relatively high conductivity.

View Article and Find Full Text PDF

Herein, bipolar electrochemistry is applied in a straightforward way to the site-selective in situ synthesis of metal-organic framework (MOF) structures, which have attracted tremendous interest in recent years because of their significant application potential, ranging from sensing to gas storage and catalysis. The novelty of the presented work is that the deposit can be intentionally confined to a defined area of a substrate without using masks or templates. The intrinsic site-selectivity of bipolar electrochemistry makes it a method of choice to generate, in a highly controlled way, hybrid particles that may have different functionalities combined on the same particle.

View Article and Find Full Text PDF

Based on the principles of bipolar electrochemistry, localized pH gradients are generated at the surface of conducting particles in solution. This allows the toposelective deposition of inorganic and organic polymer layers via a pH-triggered precipitation mechanism. Due to the intrinsic symmetry breaking of the process, the concept can be used to generate in a straightforward way Janus particles, with one section consisting of deposits obtained from non-electroactive precursors.

View Article and Find Full Text PDF