Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics.
View Article and Find Full Text PDFBackground: Excitatory synapses in the CNS are highly dynamic structures that can show activity-dependent remodeling and stabilization in response to learning and memory. Synapses are enveloped with intricate processes of astrocytes known as perisynaptic astrocytic processes (PAPs). PAPs are motile structures displaying rapid actin-dependent movements and are characterized by Ca(2+) elevations in response to neuronal activity.
View Article and Find Full Text PDFEur J Pharmacol
November 2013
The adult brain has long been viewed as a collection of neuronal networks that maintain a fixed configuration of synaptic connections. Brain plasticity and learning was thought to depend exclusively on changes in the gain and offset of these connections. Over the last 50 years, molecular and cellular studies of neuroplasticity have altered this view.
View Article and Find Full Text PDFThe survival of vertebrate species is dependent on the ability of individuals to adequately interact with each other, a function often mediated by the olfactory system. Diverse olfactory receptor repertoires are used by this system to recognize chemicals. Among these receptors, the V1rs, encoded by a very large gene family in most mammals, are able to detect pheromones.
View Article and Find Full Text PDF