Animal cells use traction forces to sense the mechanics and geometry of their environment. Measuring these traction forces requires a workflow combining cell experiments, image processing and force reconstruction based on elasticity theory. Such procedures have already been established mainly for planar substrates, in which case one can use the Green's function formalism.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2015
The measurement of cellular traction forces on soft elastic substrates has become a standard tool for many labs working on mechanobiology. Here we review the basic principles and different variants of this approach. In general, the extraction of the substrate displacement field from image data and the reconstruction procedure for the forces are closely linked to each other and limited by the presence of experimental noise.
View Article and Find Full Text PDFAdherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization.
View Article and Find Full Text PDFThe collective migration of cells is fundamental to epithelial biology. One of the hallmarks of collective behavior in migrating cohesive epithelial cell sheets is the emergence of so called leader cells. These cells exhibit a distinct morphology with a large and highly active lamellipodium.
View Article and Find Full Text PDF