Publications by authors named "Jerome P Vanderberg"

The malaria infection is initiated in mammals by injection of the sporozoite stage of the parasite through the bite of Plasmodium-infected, female Anopheles mosquitoes. Sporozoites are injected into extravascular portions of the skin while the mosquito is probing for a blood source. Sporozoite gliding motility allows them to locate and penetrate blood vessels of the dermis or subcutaneous tissues; once in the blood, they reach the liver, within which they continue their development.

View Article and Find Full Text PDF

Background: Intravenous injection of mice with attenuated Plasmodium berghei sporozoites induces sterile immunity to challenge with viable sporozoites. Non-intravenous routes have been reported to yield poor immunity. Because intravenous immunization has been considered to be unacceptable for large scale vaccination of humans, assessment was made of the results of intradermal immunization of mice with Plasmodium yoelii, a rodent malaria parasite whose infectivity resembles that of human malaria.

View Article and Find Full Text PDF

Malaria infection is initiated when a mosquito injects Plasmodium sporozoites into a mammalian host. Sporozoites exhibit gliding motility both in vitro and in vivo. This motility is associated with the secretion of at least two proteins, circumsporozoite protein (CSP) and thrombospondin-related anonymous protein (TRAP).

View Article and Find Full Text PDF

Advances towards protective vaccines against malaria were made feasible by the development of a rodent model of mammalian malaria that allowed production of all stages of the malaria parasite for study. Investigations with sporozoites (the stage transmitted by mosquitoes in their saliva) demonstrated that immunization with radiation-attenuated sporozoites could produce a solid, sterile immunity, first shown in studies with mice and later with human volunteers. Protective immune mechanisms involve anti-sporozoite antibodies that immobilize sporozoites injected into the skin by mosquitoes, followed by CD4+ and CD8+ T-cells acting against liver stage parasites produced by sporozoites that have escaped antibody-based immunity and invaded hepatocytes.

View Article and Find Full Text PDF

Malaria-infected mosquitoes feeding on a mammalian host inject sporozoites into the skin to induce a malaria infection. The numbers of sporozoites ultimately able to reach the liver may be important determinants of the characteristics of the ensuing blood infection. Because feeding mosquitoes not only inject sporozoites into the host but concomitantly ingest blood to obtain their bloodmeal, some sporozoites are re-ingested by the feeding mosquito.

View Article and Find Full Text PDF

Previous studies have shown that mosquitoes inject Plasmodium sporozoites into avascular portions of the skin of their rodent host rather than directly into the blood circulation. Then, over time, these sporozoites move into the circulation, from where they reach the liver to initiate a malaria infection. By use of intravital microscopy of the skin, we present direct morphological evidence of mosquito probing that introduces sporozoites into avascular tissue, of the migration of these sporozoites through the dermis and into blood vessels, and of the role of anti-sporozoite antibodies in blocking sporozoite invasion of these dermal blood vessels.

View Article and Find Full Text PDF