Publications by authors named "Jerome Moloney"

Microscopic many-body models based on inputs from first-principles density functional theory are used to calculate the carrier losses due to free carrier Auger-Meitner recombination (AMR) processes in Mo- and W-based monolayer transition metal dichalcogenides as a function of the carrier density, temperature, and dielectric environment. Despite the exceptional strength of Coulomb interaction in the two-dimensional materials, the AMR losses are found to be similar in magnitude to those in conventional III-V-based quantum wells for the same wavelengths. Unlike the case in III-V materials, the losses show nontrivial density dependencies due to the fact that bandgap renormalizations on the order of hundreds of millielectronvolts can bring higher bands into or out of resonance with the optimal energy level for the AMR transition, approximately one bandgap from the lowest band.

View Article and Find Full Text PDF

We predict the emergence of novel X-waves emitted as a consequence of extreme dispersive shock regularization of an intense long wave few cycle pulse propagating through a weakly dispersive medium. This robust propagation-invariant solution to Maxwell's equations appears as the asymptotic state in the high harmonic conversion when the pump propagates in a strongly nonlinear weakly dispersive regime, while the weakly nonlinear conical emission is dominated by chromatic dispersion.

View Article and Find Full Text PDF

The carrier losses due to radiative recombination in monolayer transition metal dichalcogenides are studied using fully microscopic many-body models. The density- and temperature-dependent losses in various Mo- and W-based materials are shown to be dominated by Coulomb correlations beyond the Hartree-Fock level. Despite the much stronger Coulomb interaction in 2D materials, the radiative losses are comparable-if not weaker-than in conventional III-V materials.

View Article and Find Full Text PDF

Mode-locked vertical external cavity semiconductor lasers are a unique class of nonlinear dynamical systems driven far from equilibrium. We present a novel, to the best of our knowledge, experimental result, supported by rigorous microscopic simulations, of two coexisting mode-locked V-cavity configurations sourced by a common gain medium and operating as independent channels at angle controlled separated wavelengths. Microscopic simulations support pulses coincident on the common gain chip extracting photons from a nearby pair of coexisting kinetic holes burned in the carrier distributions.

View Article and Find Full Text PDF

Higher-order optical harmonics entered the realm of nanostructured solids being observed recently in optical gratings and metasurfaces with a subwavelength thickness. Structuring materials at the subwavelength scale allows us toresonantly enhance the efficiency of nonlinear processes and reduce the size of high-harmonic sources. We report the observation of up to a seventh harmonic generated from a single subwavelength resonator made of AlGaAs material.

View Article and Find Full Text PDF

High harmonic generation (HHG) in monolayer MoS is studied using fully microscopic many-body models based on the semiconductor Bloch equations and density functional theory. It is shown that Coulomb correlations lead to a dramatic enhancement of HHG. In particular, near the bandgap, enhancements of two orders of magnitude or more are observed for a wide range of excitation wavelengths and intensities.

View Article and Find Full Text PDF

Anbased fully microscopic many-body approach is used to study the carrier relaxation dynamics in monolayer transition-metal dichalcogenides. Bandstructures and wavefunctions as well as phonon energies and coupling matrix elements are calculated using density functional theory. The resulting dipole and Coulomb matrix elements are implemented in the Dirac-Bloch equations to calculate carrier-carrier and carrier-phonon scatterings throughout the whole Brillouin zone (BZ).

View Article and Find Full Text PDF

We study the interplay between three-dimensional (3D) fully correlated optical turbulence and nonlinearity in time and 3D space resolved long-wavelength infrared pulsed beam propagation. Here the average self-trapped beam waist exceeds the inner scale in contrast to near-infrared filaments, and we find that their nonlinear self-channeling remains robust even in the presence of strong turbulence. More surprisingly, our simulation results invite a conjecture that in regimes where diffraction and nonlinearity are roughly balanced, turbulence can result in a tighter localization of the nonlinear beam core.

View Article and Find Full Text PDF

Periodic nanoparticle arrays have attracted considerable interest recently since the lattice effect can lead to spectrally narrow resonances and tune the resonance position in a broad range. Multipole decomposition is widely used to analyze the role of the multipoles in the resonance excitations, radiation, and scattering of electromagnetic waves. However, previous studies have not addressed the validity and accuracy of the multipole decomposition around the lattice resonance.

View Article and Find Full Text PDF

Long-wave multi-joule ultrashort laser pulses are predicted to confine highly uniform electromagnetic energy and field intensities while sustaining high density uniform plasmas within nonlinear Bessel zones under extreme driving conditions in contrast to near-IR sources. This opens up novel applications in laser wakefield generation, radiofrequency/microwave guiding, and lightning control.

View Article and Find Full Text PDF

We present a novel, to the best of our knowledge, system for high-resolution, time-resolved spectroscopy in the mid-wave infrared based on a modelocked vertical external cavity surface emitting laser (VECSEL) frequency comb coupled to a virtually imaged phased array (VIPA) spectrometer. The GHz level repetition rate of VECSEL-based systems coupled to VIPA spectrometers enables comb tooth resolved spectra without the use of additional filter cavities often required to increase comb tooth spacing. We demonstrate absorption spectroscopy on a methane () gas mixture at 2900 (3.

View Article and Find Full Text PDF

The influence of propagation on the nonperturbative high-harmonic features in long-wavelength strong pulse excited semiconductors is studied using a fully microscopic approach. For sample lengths exceeding the wavelength of the exciting light, it is shown that the propagation effectively acts as a very strong additional dephasing that reduces the relative height of the emission plateau up to six orders of magnitude. This propagation induced dephasing clarifies the need to use extremely short polarization decay times for the quantitative analysis of experimental observations.

View Article and Find Full Text PDF

We identify a two-stage filamentation regime for high-power 10 μm multipicosecond pulses propagating in the atmosphere. The first low-intensity stage is mainly regularized by ionization through excitation induced dephasing, which can lead to strong pulse shortening downstream. This shortening in turn causes a significant reduction of the many-body induced plasma, which changes the dynamics drastically.

View Article and Find Full Text PDF

We demonstrate a carrier-envelope offset-free frequency comb in the mid-wavelength infrared (MWIR) based on a passively mode-locked vertical external cavity surface emitting laser (VECSEL) operating at a 1.6 GHz repetition rate. The 290 mW output spanning 3.

View Article and Find Full Text PDF

We predict that long wavelength self-trapped multi-terawatt pulses can be sustained over multiple kilometers in the atmosphere. Unlike filaments, these pulses exhibit low loss propagation and retain most of their launch power at range. A novel mechanism involving an aggregation of weakly linear and nonlinear cumulative optical responses is shown to be responsible and is dominated by an ultrafast dynamical lensing resulting from a field intensity driven many-body Coulomb mediated free electron polarization associated with spatially separated species in the gas.

View Article and Find Full Text PDF

We utilize an asynchronous optical sampling technique to study the gain dynamics of vertical-external-cavity-surface-emitting lasers (VECSELs) under mode-locked operation. This allows for an in situ characterization of the gain depletion and recovery over nanoseconds with femtosecond-scale resolution. Our method allows for a more direct study of intracavity gain dynamics than traditional pump/probe measurements.

View Article and Find Full Text PDF

We present a study of an actively stabilized optically pumped semiconductor laser operating single frequency at a wavelength of 1015 nm. In free running operation, the laser exhibits a single frequency output power of 15 W with a linewidth of 995 kHz for a sampling time of 1 s. The intensity and the frequency of the laser were independently stabilized to reach a laser linewidth of only 4 kHz for the same sampling time.

View Article and Find Full Text PDF

The longitudinal multi-mode emission in a vertical-external-cavity surface-emitting laser is investigated using both single shot streak camera measurements and interferometric measurement techniques. For this, the laser is operated in the single- and two-color emission regime using both an etalon and a free-running configuration without etalon, respectively. The laser emission is analyzed with respect to pump power and output coupling losses for a long and for a short resonator.

View Article and Find Full Text PDF

We demonstrate a continuous wave, single-frequency terahertz (THz) source emitting 1.9 THz. The linewidth is less than 100 kHz and the generated THz output power exceeds 100 μW.

View Article and Find Full Text PDF

Gaussian-apodized Bessel beams can be used to create a Bessel-like axial line focus at a distance from the focusing lens. For many applications it is desirable to create an axial intensity profile that is uniform along the Bessel zone. In this article, we show that this can be accomplished through phase-only shaping of the wavefront in the far field where the beam has an annular ring structure with a Gaussian cross section.

View Article and Find Full Text PDF

In this Letter, we have shown that the subpixel smoothing technique that eliminates the staircasing error in the finite-difference time-domain method can be extended to material interface between dielectric and dispersive media by local coordinate rotation. First, we show our method is equivalent to the subpixel smoothing method for dielectric interface, then we extend it to a more general case where dispersive/dielectric interface is present. Finally, we provide a numerical example on a scattering problem to demonstrate that we were able to significantly improve the accuracy.

View Article and Find Full Text PDF

We report experiments on the generation of third and fifth harmonics of millijoule-level, tightly focused, femtosecond laser pulses at 2.2 μm wavelength in air. The measured ratio of yields of the third and fifth harmonics in our setup is found equal to 2 · 10(-4).

View Article and Find Full Text PDF

We report experiments and numerical simulations on supercontinuum generation with femtosecond Airy pulses in a highly nonlinear optical fiber. The ability of the Airy waveform to regenerate its dominant intensity peak results in the generation of distinct spectral features. Airy pulses and other self-healing temporal waveforms may be useful for the generation of spectra with desired properties.

View Article and Find Full Text PDF

Wide wavelength tunability of single- and two-color operating vertical-external-cavity-surface-emitting lasers (VECSELs) is demonstrated. Employing an external feedback based on a diffractive grating outside the cavity of a narrow-line single-color VECSEL allows for a continuous tuning of the emission wavelength over 10 nm. Employing a dual-feedback-configuration for tunable two-color emission, a tunability of the difference frequency between the two lasing wavelengths from 300 gigahertz to up to 3.

View Article and Find Full Text PDF

We report experiments on self-focusing of femtosecond diffraction-resistant vortex beams in water. These beams are higher-order Bessel beams with weak azimuthal modulation of the transverse intensity patterns. The modulation overrides the self-focusing dynamics and results in the formation of regular bottlelike filament distributions.

View Article and Find Full Text PDF