Lithium production from brines generates significant quantities of salts, including boron, that are not effectively utilized and end up being stored in landfills. This study delves into a novel approach for directly extracting boron from native brines without performing solar evaporation as an alternative to traditional methods based on boron extraction from ores, offering a sustainable route to producing boric acid or borax. By exploring factors such as 2-butyl-1-octanol concentration, phase volume ratio, temperature, and pH, the research scrutinizes boron extraction efficiency from two native brines sourced from the salar de Hombre Muerto in Argentina, alongside a synthetic brine simulating these native compositions.
View Article and Find Full Text PDFThis study presents a comprehensive investigation of neodymium extraction from decrepitated magnet powder using liquid magnesium. Neodymium extraction from the decrepitated magnet into the liquid magnesium was assessed between 700 and 900 °C by measuring the average length of the diffusion zone in sintered samples of 3 mm-thickness. Experiments were conducted in a reactor which a design allows a homogeneous distribution of magnesium with efficient agitation.
View Article and Find Full Text PDF