It has been hypothesized that vasospasm is the prime mechanism of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). Recently, it was found that clusters of spreading depolarizations (SDs) are associated with DCI. Surgical placement of nicardipine prolonged-release implants (NPRIs) was shown to strongly attenuate vasospasm.
View Article and Find Full Text PDFThe importance of stem cells to ameliorate the devastating consequences of traumatic injuries in the adult mammalian central nervous system calls for improvements in the capacity of these cells to cope, in particular, with the host response to the injury. We have previously shown, however, that in the acutely traumatized spinal cord local energy metabolism led to decreased ATP levels after neural stem cell (NSC) transplantation. As this might counteract NSC-mediated regenerative processes, we investigated if NSC selected for increased oxidative stress resistance are better suited to preserve local energy content.
View Article and Find Full Text PDFPurpose: Acute disruption of cerebral perfusion and metabolism is a well-established hallmark of the immediate phase after subarachnoid hemorrhage (SAH). It is thought to contribute significantly to acute brain injury, but despite its prognostic importance, the exact mechanism and time course is largely unknown and remains to be characterized.
Methods: We investigated changes in cerebral perfusion after SAH in both an experimental and clinical setting.
The acute neurological deficit present immediately after subarachnoid hemorrhage (SAH) correlates with overall outcome. Only limited data are available to quantify changes in cerebral perfusion in this acute phase, and this study sought to characterize those changes within the first 12 h post-SAH. Xenon contrast-enhanced CT scanning was performed in 17 patients (Hunt and Hess grade [HH] 1-3, n = 9; HH 4-5, n = 8) within 12 h after SAH.
View Article and Find Full Text PDFIn the present investigation we examined regional ATP, glucose, and lactate content in the cortical and subcortical region, in a mouse model of controlled cortcal impact (CCI) injury. In serial tissue sections, bioluminescence imaging of ATP, glucose, and lactate was performed 1 h after a single CCI injury or sham surgery and 15 min, 1, 24, and 48 h after the induction of a second CCI injury 24 h later or sham surgery. Bioluminescence images were analyzed by computer-assisted densitometry at the lesion site, at the contralateral site, and in a subcortical region.
View Article and Find Full Text PDFStem cells have been shown to partly restore central nervous system (CNS) function after transplantation into the injured CNS. However, little is known about their influence on acute energy metabolism after spinal cord injury. The present study was designed to analyze regional changes in energy metabolites.
View Article and Find Full Text PDF