Aging is accompanied by a reduction in the generation of B lymphocytes leading to impaired immune responses. In this study, we have investigated whether the decline in B lymphopoiesis is due to age-related defects in the hematopoietic stem cell compartment. The ability of hematopoietic stem cells from old mice to generate B cells, as measured in vitro, is decreased 2-5-fold, while myeloid potential remains unchanged.
View Article and Find Full Text PDFTo further clarify the contribution of nuclear architecture in the regulation of gene expression patterns during differentiation of human multipotent cells, we analyzed expression status, histone modifications, and subnuclear positioning relative to repressive compartments, of hematopoietic loci in multipotent and lineage-committed primary human hematopoietic progenitors. We report here that positioning of lineage-affiliated loci relative to pericentromeric heterochromatin compartments (PCH) is identical in multipotent cells from various origins and is unchanged between multipotent and lineage-committed hematopoietic progenitors. However, during differentiation of multipotent hematopoietic progenitors, changes in gene expression and histone modifications at these loci occur in committed progenitors, prior to changes in gene positioning relative to pericentromeric heterochromatin compartments, detected at later stages in precursor and mature cells.
View Article and Find Full Text PDFTo address the role of chromatin structure in the establishment of hematopoietic stem cell (HSC) multilineage potential and commitment to the lymphoid lineage, we have analyzed histone modifications at a panel of lymphoid- and myeloid-affiliated genes in multipotent and lineage-committed hematopoietic cells isolated from human cord blood. Our results show that many B- and T-lymphoid genes, although silent in HSCs, are associated with acetylated histones H3 and H4. We also detected histone H3 lysine 4 methylation but not repressive lysine 9 or 27 methylation marks at these loci, indicative of an open chromatin structure.
View Article and Find Full Text PDFIgH genes are assembled during early B cell development by a series of regulated DNA recombination reactions in which DH and JH segments are first joined followed by V(H) to DJH rearrangement. Recent studies have highlighted the role of chromatin structure in the control of V(D)J recombination. In this study, we show that, in murine pro-B cell precursors, the JH segments are located within a 6-kb DNase I-sensitive chromatin domain containing acetylated histones H3 and H4, which is delimited 5' by the DQ52 promoter element and 3' by the intronic enhancer.
View Article and Find Full Text PDF