Publications by authors named "Jerome Lang"

Digital technologies can augment civic participation by facilitating the expression of detailed political preferences. Yet, digital participation efforts often rely on methods optimized for elections involving a few candidates. Here we present data collected in an online experiment where participants built personalized government programmes by combining policies proposed by the candidates of the 2022 French and Brazilian presidential elections.

View Article and Find Full Text PDF

The activation of the peroxynitrite anion (PN) by hemoproteins, which leads to its detoxification or, on the contrary to the enhancement of its cytotoxic activity, is a reaction of physiological importance that is still poorly understood. It has been known for some years that the reaction of hemoproteins, notably cytochrome P450, with PN leads to the buildup of an intermediate species with a Soret band at ∼435 nm (I435). The nature of this intermediate is, however, debated.

View Article and Find Full Text PDF

Nitric oxide (NO) and the other reactive nitrogen species (RNOS) play crucial patho-physiological roles at the interface of oxidative stress and signalling processes. In mammals, the NO synthases (NOSs) are the source of these reactive nitrogen species, and so to understand the precise biological role of RNOS and NO requires elucidation of the molecular functioning of NOS. Oxygen activation, which is at the core of NOS catalysis, involves a sophisticated sequence of electron and proton transfers.

View Article and Find Full Text PDF

Stress granules (SGs) are well characterized cytoplasmic RNA bodies that form under various stress conditions. We have observed that exposure of mammalian cells in culture to low doses of UVC induces the formation of discrete cytoplasmic RNA granules that were detected by immunofluorescence staining using antibodies to RNA-binding proteins. UVC-induced cytoplasmic granules are not Processing Bodies (P-bodies) and are bone fide SGs as they contain TIA-1, TIA-1/R, Caprin1, FMRP, G3BP1, PABP1, well known markers, and mRNA.

View Article and Find Full Text PDF

Residues surrounding and interacting with the heme proximal ligand are important for efficient catalysis by heme proteins. The nitric oxide synthases (NOSs) are thiolate-coordinated enzymes that catalyze the hydroxylation of l-Arg in the first of the two catalytic cycles needed to synthesize nitric oxide. In NOSs, the indole NH group of a conserved tryptophan [W56 of the bacterial NOS-like protein from Staphylococcus aureus (saNOS)] forms a hydrogen bond with the heme proximal cysteinate ligand.

View Article and Find Full Text PDF

The proximal ligand of thiolate-coordinated heme proteins is crucial for the activation of the oxygen molecule and hydroxylation of substrates. In nitric oxide synthases (NOSs), the heme axial cysteine ligand forms a hydrogen bond to the side chain indole nitrogen of a tryptophan residue. Resonance Raman spectroscopy was used to probe W56F and W56Y variants of the NOS of Staphylococcus aureus (saNOS) and the analogous W180 variants of the endothelial NOS oxygenase domain (eNOSox).

View Article and Find Full Text PDF

For many pathogenic microorganisms, iron acquisition from host heme sources stimulates growth, multiplication, ultimately enabling successful survival and colonization. In gram-negative Escherichia coli O157:H7, Shigella dysenteriae and Yersinia enterocolitica the genes encoded within the heme utilization operon enable the effective uptake and utilization of heme as an iron source. While the complement of proteins responsible for heme internalization has been determined in these organisms, the fate of heme once it has reached the cytoplasm has only recently begun to be resolved.

View Article and Find Full Text PDF

During the initial growth infection stage of Mycobacterium tuberculosis (Mtb), (*)NO produced by host macrophages inhibits heme-containing terminal cytochrome oxidases, inactivates iron/sulfur proteins, and promotes entry into latency. Here we evaluate the potential of (*)NO as an inhibitor of Mtb cytochrome P450 enzymes, as represented by CYP130, CYP51, and the two previously uncharacterized enzymes CYP125 and CYP142. Using UV-visible absorption, resonance Raman, and stopped-flow spectroscopy, we investigated the reactions of (*)NO with these heme proteins in their ferric resting form.

View Article and Find Full Text PDF