Publications by authors named "Jerome Hochman"

Although stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology.

View Article and Find Full Text PDF

Purpose: To develop a novel, target agnostic liposome click membrane permeability assay (LCMPA) using liposome encapsulating copper free click reagent dibenzo cyclooctyne biotin (DBCO-Biotin) to conjugate azido modified peptides that may effectively translocate from extravesicular space into the liposome lumen.

Method: DBCO-Biotin liposomes were prepared with egg phosphatidylcholine and cholesterol by lipid film rehydration, freeze/thaw followed by extrusion. Size of DBCO-Biotin liposomes were characterized with dynamic light scattering.

View Article and Find Full Text PDF

The development of multiple drug modalities over the past 20 years has dramatically expanded the therapeutic space for intervention in disease processes. Rather than being alternative therapeutic approaches, these modalities tend to be complimentary both in the scope of target space and the biological mechanisms harnessed for disease control. Realization of these therapeutic opportunities requires an understanding of the physiological, biochemical and biological barriers that control exposure to the drug target and resulting biological response.

View Article and Find Full Text PDF

Stapled α-helical peptides represent an emerging superclass of macrocyclic molecules with drug-like properties, including high-affinity target binding, protease resistance, and membrane permeability. As a model system for probing the chemical space available for optimizing these properties, we focused on dual Mdm2/MdmX antagonist stapled peptides related to the p53 N-terminus. Specifically, we first generated a library of ATSP-7041 (Chang et al.

View Article and Find Full Text PDF

Macrocyclic α-helical peptides have emerged as a compelling new therapeutic modality to tackle targets confined to the intracellular compartment. Within the scope of hydrocarbon-stapling there has been significant progress to date, including the first stapled α-helical peptide to enter into clinical trials. The principal design concept of stapled α-helical peptides is to mimic a cognate (protein) ligand relative to binding its target via an α-helical interface.

View Article and Find Full Text PDF

Drug-drug interactions (DDIs) related to altered drug absorption and plasma protein binding have received much less attention from regulatory agencies relative to DDIs mediated via drug metabolizing enzymes and transporters. In this review, a number of theoretical bases and regulatory framework are presented for these DDI aspects. Also presented is an industry perspective on how to approach these issues in support of drug development.

View Article and Find Full Text PDF

Purpose: To develop a tool based on siRNA-mediated knockdown of hepatic P450 oxidoreductase (POR) to decrease the CYP-mediated metabolism of small molecule drugs that suffer from rapid metabolism in vivo, with the aim of improving plasma exposure of these drugs.

Methods: siRNA against the POR gene was delivered using lipid nanoparticles (LNPs) into rats. The time course of POR mRNA knockdown, POR protein knockdown, and loss of POR enzyme activity was monitored.

View Article and Find Full Text PDF

Effective delivery of small interfering RNA (siRNA) requires efficient cellular uptake and release into cytosol where it forms an active complex with RNAi induced silencing complex (RISC). Despite rapid developments in RNAi therapeutics, improvements in delivery efficiency of siRNA are needed to realize the full potential of this modality in broad therapeutic applications. We evaluated potential physiological and biochemical barrier(s) to the effective liver delivery of siRNA formulated in lipid nanoparticle (LNP) delivery vehicles.

View Article and Find Full Text PDF

Recently, the US Food and Drug Administration and European Medicines Agency have issued new guidance for industry on drug interaction studies, which outline comprehensive recommendations on a broad range of in vitro and in vivo studies to evaluate drug-drug interaction (DDI) potential. This paper aims to provide an overview of these new recommendations and an in-depth scientifically based perspective on issues surrounding some of the recommended approaches in emerging areas, particularly, transporters and complex DDIs. We present a number of theoretical considerations and several case examples to demonstrate complexities in applying (1) the proposed transporter decision trees and associated criteria for studying a broad spectrum of transporters to derive actionable information and (2) the recommended model-based approaches at an early stage of drug development to prospectively predict DDIs involving time-dependent inhibition and mixed inhibition/induction of drug metabolizing enzymes.

View Article and Find Full Text PDF

A glycoengineered Pichia pastoris host was used to produce an IgG1 with either afucosylated N-glycosylation (afucosylated biantennary complex) or without N-glycosylation (N297A) while a wild type P. pastoris host was used to produce an IgG1 containing fungal-type N- and O-linked glycosylation. The PK properties of these antibodies were compared to a commercial IgG1 produced in CHO cells following intravenous administration in wild type C57B6, FcγR-/- or hFcRn transgenic mice.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) is a key determinant of IgG homeostasis. It binds to the Fc domain of IgG in a strictly pH-dependent manner and protects IgG from lysosomal degradation. The impact of FcRn salvage pathway on IgG monoclonal antibody (mAb) pharmacokinetics (PK) has been well established.

View Article and Find Full Text PDF

Deeper knowledge of pharmacokinetic and pharmacodynamic (PK/PD) concepts for RNA therapeutics is important to streamline the drug development process and for rigorous selection of best performing drug candidates. Here we characterized the PK/PD relationship for small interfering RNAs (siRNAs) targeting luciferase by examining siRNA concentration in plasma and liver, the temporal RNA-induced silencing complex binding profiles, mRNA reduction, and protein inhibition measured by noninvasive bioluminescent imaging. A dose-dependent and time-related decrease in bioluminescence was detected over 25 days after a single treatment of a lipid nanoparticle-formulated siRNA targeting luciferase messenger RNA.

View Article and Find Full Text PDF

Brain penetration of drugs which are subject to P-glycoprotein (Pgp)-mediated efflux is attenuated, as manifested by the fact that the cerebrospinal fluid concentration (C(CSF)), a good surrogate of the unbound brain concentration (C(ub)), is lower than the unbound plasma concentration (C(up)) for Pgp substrates. In rodents, the attenuation magnitude of brain penetration by Pgp-mediated efflux has been estimated by correlating the ratio of CSF to plasma exposures (C(CSF)/C(p)) with the unbound fraction in plasma (f(u)) upon the incorporation of the in vivo or in vitro Pgp-mediated efflux ratios (ERs). In the present work, we investigated the impact of Pgp-mediated efflux on C(CSF) in monkeys.

View Article and Find Full Text PDF

beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated.

View Article and Find Full Text PDF

On-line liquid chromatography/electrospray ionization high-resolution mass spectrometry (LC/ESI-HRMS) using an LTQ-Orbitrap mass spectrometer was employed to investigate the metabolite profiles of a model siRNA duplex designated HBV263. The HBV263 duplex was incubated in rat and human serum and liver microsomes in vitro. The siRNA drug and its metabolites were then extracted using a liquid-liquid extraction followed by solid-phase extraction (LLE-SPE), and analyzed by LC/ESI-MS.

View Article and Find Full Text PDF

Membrane bound P-glycoprotein (Pgp) acts as an active transport pump. It plays a major role as a cause of multidrug resistance (MDR) and acts as a component of the blood-brain barrier. Pgp transports a wide variety of structurally unrelated compound from the cell interior into the extracellular space.

View Article and Find Full Text PDF

This letter describes replacements for the P3 amide moiety present in previously reported tertiary carbinamine macrolactones. Although P-gp efflux issues associated with these amide-macrolactones were solved and full brain penetration was measured in one case, potency was compromised in the process.

View Article and Find Full Text PDF

This Letter describes the design and synthesis of tertiary carbinamine macrocyclic inhibitors of the beta-secretase (BACE-1) enzyme. These macrocyclic inhibitors, some of which incorporate novel P2 substituents, display a 2- to 100-fold increase in potency relative to the previously described acyclic analogs while affording greater stability.

View Article and Find Full Text PDF

A series of low-molecular weight 2,6-diamino-isonicotinamide BACE-1 inhibitors containing an amine transition-state isostere were synthesized and shown to be highly potent in both enzymatic and cell-based assays. These inhibitors contain a trans-S,S-methyl cyclopropane P(3) which bind BACE-1 in a 10s-loop down conformation giving rise to highly potent compounds with favorable molecular weight and moderate to high susceptibility to P-glycoprotein (P-gp) efflux.

View Article and Find Full Text PDF

A rapid analogue approach to identification of spirohydantoin-based CGRP antagonists provided novel, low molecular weight leads. Modification of these leads afforded a series of nanomolar benzimidazolinone-based CGRP receptor antagonists. The oral bioavailability of these antagonists was inversely correlated with polar surface area, suggesting that membrane permeability was a key limitation to absorption.

View Article and Find Full Text PDF

Introduction: P-glycoprotein is localized in numerous tissues throughout the body and plays an important role in the disposition of many xenobiotics. The contribution of P-glycoprotein-mediated drug transport is being evaluated in early drug discovery stages, particularly for compounds targeted to the central nervous system, using in vitro tools including cell lines expressing P-glycoprotein. Previous work in our laboratory suggests there are species differences in P-glycoprotein transport activity between humans and animals.

View Article and Find Full Text PDF

Purpose: In this study, P-glycoprotein (P-gp) mediated efflux of simvastatin (SV), simvastatin acid (SVA), and atorvastatin (AVA) and inhibition of P-gp by SV, SVA, and AVA were evaluated to assess the role of P-gp in drug interactions.

Methods: P-gp mediated efflux of SV, SVA, and AVA was determined by directional transport across monolayers of LLC-PK1 cells and LLC-PK1 cells transfected with human MDR1. Inhibition of P-gp was evaluated by studying the vinblastine efflux in Caco-2 cells and in P-gp overexpressing KBV1 cells at concentrations of SV, SVA, and AVA up to 50 microM.

View Article and Find Full Text PDF

Cytochromes P450 (CYPs) and p-glycoproteins (Pgps) are believed to play important roles in drug absorption, metabolism, and elimination. Numerous drugs and environmental chemicals can modulate expression of these two classes of genes in different species. The present study investigated the effect of dexamethasone (Dex) on gene expression on both message and protein levels of mdr1a, mdr1b, CYP3A1, and CYP3A2 in small intestine, colon, liver, kidney, and brain microvessels of the rats treated orally with Dex at 1 or 20 mg/kg/day for 3 days.

View Article and Find Full Text PDF

Compound A [(+)-(5S,6R,7R)-2-isopropylamino-7-[4-methoxy-2-((2R)-3-methoxy-2-methylpropyl)-5-(3,4-methylenedioxyphenyl) cyclopenteno [1,2-b] pyridine 6-carboxylic acid] is a new and selective endothelin ET(A) receptor antagonist. It underwent significant acyl glucuronidation and acyl glucosidation in human liver microsomes supplemented with UDP-glucuronic acid (UDPGA) and UDP-glucose (UDPG). These two conjugations were observed in a panel of human liver microsomal samples (n = 16) that gave rise to varying activities but with no significant correlation with each other in the native and activator-treated microsomal preparations (r(2) View Article and Find Full Text PDF