Mercury methylation and demethylation processes govern the fate of methylmercury in aquatic ecosystems. Under anoxic conditions, methylation activity is mainly of biological origin and is often the result of sulfate-reducing bacteria. In this study, the use of a luminescent biosensor for screening methylmercury production was validated by exposing the reporter strain to methylating or non-methylating Desulfovibrio strains.
View Article and Find Full Text PDFTraditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs) contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e.
View Article and Find Full Text PDFBenthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes.
View Article and Find Full Text PDFThe proteins encoded by the hgcA and hgcB genes are currently the only ones known to be involved in the mercury methylation by anaerobic microorganisms. However, no studies have been published to determine the relationships between their expression level and the net/gross methylmercury production. This study aimed to decipher the effect of growth conditions on methylmercury production and the relationships between hgcA and hgcB expression levels and net methylation.
View Article and Find Full Text PDFThis study investigated the impacts of an organochlorine (OC, γ-hexachlorocyclohexane and chlorobenzenes) mixture on microbial communities associated to Phragmites australis rhizosphere. Seventy-eight distinct colony morphotypes were isolated, cultivated and analysed by 16S rDNA sequence analysis. Toxicity tests confirmed sensitivity (e.
View Article and Find Full Text PDFHere we report the full genome sequence of Modestobacter marinus strain BC501, an actinobacterial isolate that thrives on stone surfaces. The generated chromosome is circular, with a length of 5.57 Mb and a G+C content of 74.
View Article and Find Full Text PDFMembers of the genus Blastococcus have been isolated from sandstone monuments, as well as from sea, soil, plant, and snow samples. We report here the genome sequence of a member of this genus, Blastococcus saxobsidens strain DD2, isolated from below the surface of a Sardinian wall calcarenite stone sample.
View Article and Find Full Text PDFStones in arid environments are inhabited by actinobacteria of the family Geodermatophilaceae like the genera Blastococcus and Modestobacter frequently isolated from altered calcarenites. Their habitat requires adaptation to light-induced and other stresses that generate reactive oxygen species. Here, we show that representative members of the species Blastococcus saxobsidens, Geodermatophilus obscurus, and Modestobacter multiseptatus are differentially adapted to stresses associated with arid environments.
View Article and Find Full Text PDFThe phenolic acid decarboxylase gene padA is involved in the phenolic acid stress response (PASR) in gram-positive bacteria. In Lactobacillus plantarum, the padR gene encodes the negative transcriptional regulator of padA and is cotranscribed with a downstream gene, usp1, which encodes a putative universal stress protein (USP), Usp1, of unknown function. The usp1 gene is overexpressed during the PASR.
View Article and Find Full Text PDFBackground: The detrimental effects of chemical insecticides on the environment and human health have lead to the call for biological alternatives. Today, one of the most promising solutions is the use of spray formulations based on Bacillus thuringiensis subsp. israelensis (Bti) in insect control programs.
View Article and Find Full Text PDFCE fingerprint methods are commonly used in microbial ecology. We have previously noticed that the position and number of peaks in CE-SSCP (single-strand conformation polymorphism) profiles depend on the DNA polymerase used in PCR [1]. Here, we studied the fragments produced by Taq polymerase as well as four commercially available proofreading polymerases, using the V3 region of the Escherichia coli rss gene as a marker.
View Article and Find Full Text PDFIn Bacillus subtilis, several phenolic acids specifically induce expression of padC, encoding a phenolic acid decarboxylase that converts these antimicrobial compounds into vinyl derivatives. padC forms an operon with a putative coding sequence of unknown function, yveFG, and this coding sequence does not appear to be involved in the phenolic acid stress response (PASR). To identify putative regulators involved in the PASR, random transposon mutagenesis, combined with two different screens, was performed.
View Article and Find Full Text PDFFungal communities are key components of soil, but the study of their ecological significance is limited by a lack of appropriated methods. For instance, the assessment of fungi occurrence and spatio-temporal variation in soil requires the analysis of a large number of samples. The molecular signature methods provide a useful tool to monitor these microbial communities and can be easily adapted to capillary electrophoresis (CE) allowing high-throughput studies.
View Article and Find Full Text PDFIn Lactobacillus plantarum, PadR, the negative transcriptional regulator of padA encoding the phenolic acid decarboxylase, is divergently oriented from padA. Moreover, it forms an operonic structure with usp1, a genewhose products display homology with proteins belonging to the UspA family of universal stress proteins. PadR is inactivated by the addition of p-coumaric, ferulic or caffeic acid to the culture medium.
View Article and Find Full Text PDFThe molecular signature of bacteria from soil ecosystems is an important tool for studying microbial ecology and biogeography. However, a high-throughput technology is needed for such studies. In this article, we tested the suitability of available methods ranging from soil DNA extraction to capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) for high-throughput studies.
View Article and Find Full Text PDFThe lactic acid bacterium Lactobacillus plantarum possesses a promising inducible padA promoter that controls the expression of the padA gene encoding a phenolic acid decarboxylase, and which is transcriptionally regulated by phenolic acids. A strategy was followed in order to clone genes involved in the transcriptional regulation of the padA gene. The pGh9:IS S1 plasmid was used to perfect the mutagenesis of L.
View Article and Find Full Text PDFLactobacillus plantarum displays a substrate-inducible padA gene encoding a phenolic acid decarboxylase enzyme (PadA) that is considered a specific chemical stress response to the inducing substrate. The putative regulator of padA was located in the padA locus based on its 52% identity with PadR, the padA gene transcriptional regulator of Pediococcus pentosaceus (L. Barthelmebs, B.
View Article and Find Full Text PDF