High-quality graphene is an especially promising carbon nanomaterial for developing nanofluids for enhancing heat transfer in fluid circulation systems. We report a complete study on few layer graphene (FLG) based nanofluids, including FLG synthesis, FLG-based nanofluid preparation, and their thermal conductivity. The FLG sample is synthesized by an original mechanical exfoliation method.
View Article and Find Full Text PDFThe effect of microwaves on the functionalization of single-walled carbon nanotubes (SWNTs) by the diazonium method was studied. The usage of a new approach led to the identification of the strength of the interaction (physical or chemical) between the functional groups and the carbon nanotube surface. Moreover, the nature (chemical formula) of the adsorbed/grafted functional groups was determined.
View Article and Find Full Text PDFPhase composition of epitaxial/textured LiNbO3 films on sapphire substrates, grown by pulsed laser deposition, atmospheric pressure metal organic chemical vapor deposition and pulsed injection metal organic chemical vapor deposition was studied by conventional x-ray diffraction techniques. Raman spectroscopy, being highly sensitive to the symmetry of materials, was used as a countercheck in the compositional analysis. The wavenumbers of Raman modes of LiNb3O8 and Li3NbO4 phases were identified from Raman spectra of synthesized powders.
View Article and Find Full Text PDF