Publications by authors named "Jerome G Chandraseelan"

Arylhydrazones of active methylene compounds (AHAMCs) are potent chemotherapy agents for the cancer treatment. AHAMCs enhance the apoptotic cell death and antiproliferation properties in cancer cells. In this study, a series of AHAMCs, 13 compounds, was assayed for cytotoxicity, apoptosis, externalization of phosphatidylserine, heterogeneity and cellular calcium level changes.

View Article and Find Full Text PDF

Background: Phenolic compounds are known for their cytotoxic properties against cancer cells despite their still unclear general mechanism of action. Herein is reported the evaluation of the cytotoxic effects of on human osteosarcoma cells of nine phenol derivatives against osteosarcoma cells, and some insights on their mechanism.

Method And Results: The cytotoxicity was characterized by cell viability, scratch assay, cellular DNA content measurement, Annexin V apoptosis, mitochondrial calcium and caspase 3/7 assays.

View Article and Find Full Text PDF

Development of novel anticancer drugs is inevitable to improve treatment of cancers. In this study, novel derivatives of indoline and morpholine were synthesized and tested for their cytotoxic effects on osteosarcoma and Human Embryonic Kidney cells. To characterize cytotoxicity and the mechanism of cell death, we used cytotoxicity, migration, apoptosis markers and mitochondrial calcium assays.

View Article and Find Full Text PDF

We investigate the hypothesis that, in Escherichia coli, while the concentration of RNA polymerases differs in different growth conditions, the fraction of RNA polymerases free for transcription remains approximately constant within a certain range of these conditions. After establishing this, we apply a standard model-fitting procedure to fully characterize the in vivo kinetics of the rate-limiting steps in transcription initiation of the Plac/ara-1 promoter from distributions of intervals between transcription events in cells with different RNA polymerase concentrations. We find that, under full induction, the closed complex lasts ∼788 s while subsequent steps last ∼193 s, on average.

View Article and Find Full Text PDF

Synthetic genetic clocks, such as the Elowitz-Leibler repressilator, will be key regulatory components of future synthetic circuits. We constructed a single-copy repressilator (SCR) by implementing the original repressilator circuit on a single-copy F-plasmid. After verifying its functionality, we studied its behaviour as a function of temperature and compared it with that of the original low-copy-number repressilator (LCR).

View Article and Find Full Text PDF

We studied the behaviour of the repressilator at 28 °C, 30 °C, 33 °C, and 37 °C. From the fluorescence in each cell over time, we determined the period of oscillations, the functionality (fraction of cells exhibiting oscillations) and the robustness (fraction of expected oscillations that occur) of this circuit. We show that the oscillatory dynamics differs with temperature.

View Article and Find Full Text PDF

Using a single-RNA detection technique in live Escherichia coli cells, we measure, for each cell, the waiting time for the production of the first RNA under the control of PBAD promoter after induction by arabinose, and subsequent intervals between transcription events. We find that the kinetics of the arabinose intake system affect mean and diversity in RNA numbers, long after induction. We observed the same effect on Plac/ara-1 promoter, which is inducible by arabinose or by IPTG.

View Article and Find Full Text PDF