Publications by authors named "Jerome Fast"

Wildfires emit solid-state strongly absorptive brown carbon (solid S-BrC, commonly known as tar ball), critical to Earth's radiation budget and climate, but their highly variable light absorption properties are typically not accounted for in climate models. Here, we show that from a Pacific Northwest wildfire, over 90% of particles are solid S-BrC with a mean refractive index of 1.49 + 0.

View Article and Find Full Text PDF

A key challenge in aerosol pollution studies and climate change assessment is to understand how atmospheric aerosol particles are initially formed. Although new particle formation (NPF) mechanisms have been described at specific sites, in most regions, such mechanisms remain uncertain to a large extent because of the limited ability of atmospheric models to simulate critical NPF processes. Here we synthesize molecular-level experiments to develop comprehensive representations of 11 NPF mechanisms and the complex chemical transformation of precursor gases in a fully coupled global climate model.

View Article and Find Full Text PDF
Article Synopsis
  • New particle formation (NPF) significantly increases ultrafine particle counts and may contribute to cloud condensation nuclei (CCN) in the Yangtze River Delta, China, especially during spring.
  • *Research conducted in Nanjing combined observational data with WRF-Chem model simulations to investigate the mechanisms behind NPF and its connection to vertical mixing in the planetary boundary layer (PBL).
  • *Results show that vertical mixing transports newly formed particles downward, enhancing surface particle concentrations and affecting the strength and timing of NPF events, highlighting the importance of PBL dynamics in understanding aerosol impacts on climate.*
View Article and Find Full Text PDF

Predicting source or background radionuclide emissions is limited by the effort needed to run gas/aerosol atmospheric transport models (ATMs). A high-performance surrogate model is developed for the HYSPLIT4 (NOAA) ATM to accelerate transport simulation through model reduction, code optimization, and improved scaling on high performance computing systems. The surrogate model parameters are a grid of short-duration transport simulations stored offline.

View Article and Find Full Text PDF

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area.

View Article and Find Full Text PDF

A major challenge in assessing the impact of aerosols on climate change is to understand how human activities change aerosol loading and properties relative to the pristine/preindustrial baseline. Here, we combine chemical transport simulations and field measurements to investigate the effect of anthropogenic pollution from an isolated metropolis on the particle number concentration over the preindustrial-like Amazon rainforest through various new-particle formation (NPF) mechanisms and primary particle emissions. To represent organic-mediated NPF, we employ a state-of-the-art model that systematically simulates the formation chemistry and thermodynamics of extremely low volatility organic compounds, as well as their roles in NPF processes, and further update the model to improve organic NPF simulations under human-influenced conditions.

View Article and Find Full Text PDF

The large concentrations of ultrafine particles consistently observed at high altitudes over the tropics represent one of the world's largest aerosol reservoirs, which may be providing a globally important source of cloud condensation nuclei. However, the sources and chemical processes contributing to the formation of these particles remain unclear. Here we investigate new particle formation (NPF) mechanisms in the Amazon free troposphere by integrating insights from laboratory measurements, chemical transport modeling, and field measurements.

View Article and Find Full Text PDF

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations.

View Article and Find Full Text PDF