Publications by authors named "Jerome Engel"

In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure-onset zone and incorporation of neuroimaging findings from MRI, PET, single-photon emission CT and magnetoencephalography modalities. Resecting cortical tissue generating high-frequency oscillations has been investigated as a more efficacious alternative to targeting the seizure-onset zone.

View Article and Find Full Text PDF

Objective: Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines high-frequency oscillations (HFOs) in the brain to find a reliable way to differentiate between harmful and normal oscillations during epilepsy monitoring.
  • Researchers analyzed over 686,000 HFOs from 185 epilepsy patients, using advanced techniques like variational autoencoders to identify unique characteristics of pathological HFOs that correlate with seizure activity.
  • The findings indicate that these pathological HFOs have distinct features, show a strong link to seizure onset zones, and provide better predictive outcomes for post-surgery seizure control compared to traditional classification methods.
View Article and Find Full Text PDF

. This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning (DL) methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings..

View Article and Find Full Text PDF

In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure onset zone (SOZ) and incorporation of neuroimaging findings from MRI, PET, SPECT, and MEG modalities. Resecting cortical tissue generating high-frequency oscillations (HFOs) has been investigated as a more efficacious alternative to targeting the SOZ.

View Article and Find Full Text PDF

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group.

Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions.

View Article and Find Full Text PDF

Objective: To confirm and investigate why pathological high-frequency oscillations (pHFOs), including ripples (80-200 Hz) and fast ripples (200-600 Hz), are generated during the UP-DOWN transition of the slow wave and if information transmission mediated by ripple temporal coupling is disrupted in the seizure-onset zone (SOZ).

Methods: We isolated 217 total units from 175.95 intracranial electroencephalography (iEEG) contact-hours of synchronized macro- and microelectrode recordings from 6 patients.

View Article and Find Full Text PDF

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group.

Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions.

View Article and Find Full Text PDF

Inter-ictal spikes aid in the diagnosis of epilepsy and in planning surgery of medication-resistant epilepsy. However, the localizing information from spikes can be unreliable because spikes can propagate, and the burden of spikes, often assessed as a rate, does not always correlate with the seizure onset zone or seizure outcome. Recent work indicates identifying where spikes regularly emerge and spread could localize the seizure network.

View Article and Find Full Text PDF

The neuronal circuit disturbances that drive inter-ictal and ictal epileptiform discharges remain elusive. Using a combination of extra-operative macro-electrode and micro-electrode inter-ictal recordings in six pre-surgical patients during non-rapid eye movement sleep, we found that, exclusively in the seizure onset zone, fast ripples (200-600 Hz), but not ripples (80-200 Hz), frequently occur <300 ms before an inter-ictal intra-cranial EEG spike with a probability exceeding chance (bootstrapping, < 1e-5). Such fast ripple events are associated with higher spectral power ( < 1e-10) and correlated with more vigorous neuronal firing than solitary fast ripple (generalized linear mixed-effects model, < 1e-9).

View Article and Find Full Text PDF

Importance: Published data about the impact of poststroke seizures (PSSs) on the outcomes of patients with stroke are inconsistent and have not been systematically evaluated, to the authors' knowledge.

Objective: To investigate outcomes in people with PSS compared with people without PSS.

Data Sources: MEDLINE, Embase, PsycInfo, Cochrane, LILACS, LIPECS, and Web of Science, with years searched from 1951 to January 30, 2023.

View Article and Find Full Text PDF

Objective: To confirm and investigate why pathological HFOs (pHFOs), including Ripples [80-200 Hz] and fast ripples [200-600 Hz], are generated during the UP-DOWN transition of the slow wave and if pHFOs interfere with information transmission.

Methods: We isolated 217 total units from 175.95 iEEG contact-hours of synchronized macro- and microelectrode recordings from 6 patients.

View Article and Find Full Text PDF

Background: Functional seizures (FS) are paroxysmal episodes, resembling epileptic seizures, but without underlying epileptic abnormality. The aetiology and neuroanatomic associations are incompletely understood. Recent brain imaging data indicate cerebral changes, however, without clarifying possible pathophysiology.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate the utility and safety of "hybrid" stereo-electroencephalography (SEEG) in guiding epilepsy surgery and in providing information at single-neuron levels (i.e., single-unit recording) to further the understanding of the mechanisms of epilepsy and the neurocognitive processes unique to humans.

View Article and Find Full Text PDF

The neuronal circuit disturbances that drive interictal and ictal epileptiform discharges remains elusive. Using a combination of extraoperative macro- and micro-electrode interictal recordings in six presurgical patients during non-rapid eye movement (REM) sleep we found that, exclusively in the seizure onset zone, fast ripples (FR; 200-600Hz), but not ripples (80-200 Hz), frequently occur <300 msec before an interictal intracranial EEG (iEEG) spike with a probability exceeding chance (bootstrapping, p<1e-5). Such FR events are associated with higher spectral power (p<1e-10) and correlated with more vigorous neuronal firing than solitary FR (generalized linear mixed-effects model, GLMM, p<1e-3) irrespective of FR power.

View Article and Find Full Text PDF

How responsive neurostimulation (RNS) decreases seizure frequency is unclear. Stimulation may alter epileptic networks during inter-ictal epochs. Definitions of the epileptic network vary but fast ripples (FRs) may be an important substrate.

View Article and Find Full Text PDF

Fast ripples (FR) are a biomarker of epileptogenic brain, but when larger portions of FR generating regions are resected seizure freedom is not always achieved. To evaluate and improve the diagnostic accuracy of FR resection for predicting seizure freedom we compared the FR resection ratio (RR) with FR network graph theoretical measures. In 23 patients FR were semi-automatically detected and quantified in stereo EEG recordings during sleep.

View Article and Find Full Text PDF

Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a promising spatial biomarker of the epileptogenic zone. However, HFOs can also be recorded in the healthy brain regions, which complicates the interpretation of HFOs. The present study aimed to characterize salient features of physiological HFOs using deep learning (DL).

View Article and Find Full Text PDF

Background And Objectives: Although moderate and severe traumatic brain injury (TBI) can cause posttraumatic epilepsy (PTE), many patients with functional seizures (FS) also report a history of mild TBI. To determine whether features of TBI history differ between patients with epileptic seizures (ES) and FS, we compared patient reports of TBI severity, symptoms, and causes of injury.

Methods: We recruited patients undergoing video-EEG evaluation for the diagnosis of ES, FS, mixed ES and FS, or physiologic seizure-like events at an academic, tertiary referral center.

View Article and Find Full Text PDF

Studies of interictal EEG functional connectivity in the epileptic brain seek to identify abnormal interactions between brain regions involved in generating seizures, which clinically often is defined by the seizure onset zone (SOZ). However, there is evidence for abnormal connectivity outside the SOZ (NSOZ), and removal of the SOZ does not always result in seizure control, suggesting, in some cases, that the extent of abnormal connectivity indicates a larger seizure network than the SOZ. To better understand the potential differences in interictal functional connectivity in relation to the seizure network and outcome, we computed event connectivity in the theta (4-8 Hz, ThEC), low-gamma (30-55 Hz, LGEC), and high-gamma (65-95 Hz, HGEC) bands from interictal depth EEG recorded in surgical patients with medication-resistant seizures suspected to begin in the temporal lobe.

View Article and Find Full Text PDF

Epileptiform spikes are used to localize epileptogenic brain tissue. The mechanisms that spontaneously trigger epileptiform discharges are not yet elucidated. Pathological fast ripple (FR, 200-600 Hz) are biomarkers of epileptogenic brain, and we postulated that FR network interactions are involved in generating epileptiform spikes.

View Article and Find Full Text PDF

Objective: Aiming to improve the feasibility and reliability of using high-frequency oscillations (HFOs) for translational studies of epilepsy, we present a pipeline with features specifically designed to reject false positives for HFOs to improve the automatic HFO detector.

Methods: We presented an integrated, multi-layered procedure capable of automatically rejecting HFOs from a variety of common false positives, such as motion, background signals, and sharp transients. This method utilizes a time-frequency contour approach that embeds three different layers including peak constraints, power thresholds, and morphological identification to discard false positives.

View Article and Find Full Text PDF

Purpose: Functional seizures (FS), also known as psychogenic nonepileptic seizures (PNES), are physical manifestations of acute or chronic psychological distress. Functional and structural neuroimaging have identified objective signs of this disorder. We evaluated whether magnetic resonance imaging (MRI) morphometry differed between patients with FS and clinically relevant comparison populations.

View Article and Find Full Text PDF