Determining why convergent traits use distinct versus shared genetic components is crucial for understanding how evolutionary processes generate and sustain biodiversity. However, the factors dictating the genetic underpinnings of convergent traits remain incompletely understood. Here, we use heterologous protein expression, biochemical assays, and phylogenetic analyses to confirm the origin of a luciferase gene from haloalkane dehalogenases in the brittle star .
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Symbiotic relationships are omnipresent and particularly diverse in the marine world. In the Western Indian Ocean, the sea urchin Echinometra mathaei associates with two obligate ectosymbiotic shrimp species, Tuleariocaris holthuisi and Arete indicus. These shrimps are known for their host-dependent nature.
View Article and Find Full Text PDFSpecies within nearly all extant animal lineages are capable of regenerating body parts. However, it remains unclear whether the gene expression programme controlling regeneration is evolutionarily conserved. Brittle stars are a species-rich class of echinoderms with outstanding regenerative abilities, but investigations into the genetic bases of regeneration in this group have been hindered by the limited genomic resources.
View Article and Find Full Text PDFNeuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria.
View Article and Find Full Text PDFMutable collagenous tissues (MCTs) from echinoderms (e.g., sea stars, sea urchins) possess the remarkable ability to change their mechanical properties rapidly and reversibly thanks to the release of effector molecules regulating the number of cross-links between collagen fibrils.
View Article and Find Full Text PDFSulfakinin (SK)/cholecystokinin (CCK)-type neuropeptides regulate feeding and digestion in protostomes (e.g. insects) and chordates.
View Article and Find Full Text PDFIn holothuroids, oocyte maturation is stopped in ovaries at the prophase I stage of meiosis. In natural conditions, the blockage is removed during the spawning by an unknown mechanism. When oocytes are isolated by dissection, the meiotic release can be successfully induced by a natural inducer, the REES (i.
View Article and Find Full Text PDFAquacultivated sea cucumbers often suffer from SKin Ulceration Diseases (SKUDs). SKUDs have been observed in six holothuroid species from nine countries. All SKUDs present a similar symptom-the skin ulceration-and can be induced by bacteria, viruses, or abiotic factors.
View Article and Find Full Text PDFThe function of pocket shark pectoral pockets has puzzled scientists over decades. Here, we show that the pockets of the American Pocket Shark (Mollisquama mississippiensis) contain a brightly fluorescent stratified cubic epithelium enclosed in a pigmented sheath and in close contact with the basal cartilage of the pectoral fins; cells of this epithelium display a centripetal gradient in size and a centrifuge gradient in fluorescence. These results strongly support the idea that pocket shark's pockets are exocrine holocrine glands capable of discharging a bioluminescent fluid, potentially upon a given movement of the pectoral fin.
View Article and Find Full Text PDFThe velvet belly lanternshark, Etmopterus spinax, uses counterillumination to disappear in the surrounding blue light of its marine environment. This shark displays hormonally controlled bioluminescence in which melatonin (MT) and prolactin (PRL) trigger light emission, while α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) play an inhibitory role. The extraocular encephalopsin (Es-Opn3) was also hypothesized to act as a luminescence regulator.
View Article and Find Full Text PDFBiological organisms produce high-performance composite materials, such as bone, wood and insect cuticle, which provide inspiration for the design of novel materials. Ascidians (sea squirts) produce an organic exoskeleton, known as a tunic, which has been studied quite extensively in several species. However, currently, there are still gaps in our knowledge about the detailed structure and composition of this cellulosic biocomposite.
View Article and Find Full Text PDFGen Comp Endocrinol
August 2020
As part of the study of their bioluminescence, the deep-sea lanternshark Etmopterus spinax and Etmopterus molleri (Chondrichthyes, Etmopteridae) received growing interest over the past ten years. These mesopelagic sharks produce light thanks to a finely tuned hormonal control involving melatonin, adrenocorticotropic hormone and α-melanocyte-stimulating hormone. Receptors of these hormones, respectively the melatonin receptors and the melanocortin receptors, are all members of the G-protein coupled receptor family i.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2019
Sea stars use adhesive secretions to attach their numerous tube feet strongly and temporarily to diverse surfaces. After detachment of the tube feet, the adhesive material stays bound to the substrate as so-called 'footprints'. In the common sea star species Asterias rubens, the adhesive material has been studied extensively and the first sea star footprint protein (Sfp1) has been characterized.
View Article and Find Full Text PDFAmong Etmopteridae and Dalatiidae, luminous species use hormonal control to regulate bioluminescence. Melatonin (MT) triggers light emission and, conversely, alpha melanocyte-stimulating hormone (α-MSH) actively reduces ongoing luminescence. Prolactin (PRL) acts differentially, triggering light emission in Etmopteridae and inhibiting it in Dalatiidae.
View Article and Find Full Text PDFBackground: Vasopressin/oxytocin (VP/OT)-type neuropeptides are well known for their roles as regulators of diuresis, reproductive physiology and social behaviour. However, our knowledge of their functions is largely based on findings from studies on vertebrates and selected protostomian invertebrates. Little is known about the roles of VP/OT-type neuropeptides in deuterostomian invertebrates, which are more closely related to vertebrates than protostomes.
View Article and Find Full Text PDFMarine organisms are able to produce light using either their own luminous system, called intrinsic bioluminescence, or symbiotic luminous bacteria, called extrinsic bioluminescence. Among bioluminescent vertebrates, Osteichthyes are known to harbor both types of bioluminescence, while no study has so far addressed the potential use of intrinsic/extrinsic luminescence in elasmobranchs. In sharks, two families are known to emit light: Etmopteridae and Dalatiidae.
View Article and Find Full Text PDFThe velvet belly lanternshark (Etmopterus spinax) is a small deep-sea shark commonly found in the Eastern Atlantic and the Mediterranean Sea. This bioluminescent species is able to emit a blue-green ventral glow used in counter-illumination camouflage, mainly. In this study, paired-end Illumina HiSeqTM technology has been employed to generate transcriptome data from eye and ventral skin tissues of the lanternshark.
View Article and Find Full Text PDFNeuropeptides are diverse and evolutionarily ancient regulators of physiological/behavioural processes in animals. Here we have investigated the evolution and comparative physiology of luqin-type neuropeptide signalling, which has been characterised previously in protostomian invertebrates. Phylogenetic analysis indicates that luqin-type receptors and tachykinin-type receptors are paralogous and probably originated in a common ancestor of the Bilateria.
View Article and Find Full Text PDFNeuropeptides are a diverse class of intercellular signalling molecules that mediate neuronal regulation of many physiological and behavioural processes. Recent advances in genome/transcriptome sequencing are enabling identification of neuropeptide precursor proteins in species from a growing variety of animal taxa, providing new insights into the evolution of neuropeptide signalling. Here, detailed analysis of transcriptome sequence data from three brittle star species, , and , has enabled the first comprehensive identification of neuropeptide precursors in the class Ophiuroidea of the phylum Echinodermata.
View Article and Find Full Text PDFBioluminescence relies on the oxidation of a luciferin substrate catalysed by a luciferase enzyme. Luciferins and luciferases are generic terms used to describe a large variety of substrates and enzymes. Whereas luciferins can be shared by phylogenetically distant organisms which feed on organisms producing them, luciferases have been thought to be lineage-specific enzymes.
View Article and Find Full Text PDFNext generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea.
View Article and Find Full Text PDFBackground: In non-classical model species, Next Generation Sequencing increases the ability to analyze the expression of transcripts/genes. In this study, paired-end Illumina HiSeq sequencing technology has been employed to describe a larval transcriptome generated from 64 h post-fertilization pluteus larvae of the brittle star Amphiura filiformis. We focused our analysis on the detection of actors involved in the opsin based light perception, respectively the opsins and the phototransduction actors.
View Article and Find Full Text PDFBackground: In metazoans, opsins are photosensitive proteins involved in both vision and non-visual photoreception. Echinoderms have no well-defined eyes but several opsin genes were found in the purple sea urchin (Strongylocentrotus purpuratus) genome. Molecular data are lacking for other echinoderm classes although many species are known to be light sensitive.
View Article and Find Full Text PDF