Publications by authors named "Jerome Daligault"

Warm dense matter (WDM) represents a highly excited state that lies at the intersection of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of matter in this regime. In this work, by exciting isolated ∼8  nm copper nanoparticles with a femtosecond laser below the ablation threshold, we create uniformly excited WDM.

View Article and Find Full Text PDF

Accurate phase diagrams of multicomponent plasmas are required for the modeling of dense stellar plasmas, such as those found in the cores of white dwarf stars and the crusts of neutron stars. Those phase diagrams have been computed using a variety of standard techniques, which suffer from physical and computational limitations. Here we present an efficient and accurate method that overcomes the drawbacks of previously used approaches.

View Article and Find Full Text PDF

A charged particle moving through a plasma experiences a friction force that commonly acts antiparallel to its velocity. It was recently predicted that in strongly magnetized plasmas, in which the plasma particle gyrofrequency exceeds the plasma frequency, the friction also includes a transverse component that is perpendicular to both the velocity and Lorentz force. Here, this prediction is confirmed using molecular-dynamics simulations, and it is shown that the relative magnitude of the transverse component increases with plasma coupling strength.

View Article and Find Full Text PDF

An accurate description of electron-ion interactions in materials is crucial for our understanding of their equilibrium and nonequilibrium properties. Here we assess the properties of frictional forces experienced by ions in noncrystalline metallic systems, including liquid metals and warm dense plasmas, that arise from electronic excitations driven by the nuclear motion due to the presence of a continuum of low-lying electronic states. To this end, we perform detailed ab initio calculations of the full friction tensor that characterizes the set of friction forces.

View Article and Find Full Text PDF

We discuss a method to calculate with quantum molecular dynamics simulations the rate of energy exchanges between electrons and ions in two-temperature plasmas, liquid metals, and hot solids. Promising results from this method were recently reported for various materials and physical conditions [Simoni and Daligault, Phys. Rev.

View Article and Find Full Text PDF

We present a theory for the rate of energy exchange between electrons and ions-also known as the electron-ion coupling factor-in physical systems ranging from hot solid metals to plasmas, including liquid metals and warm dense matter. The paper provides the theoretical foundations of a recent work [J. Simoni and J.

View Article and Find Full Text PDF

We present first-principles calculations of the rate of energy exchanges between electrons and ions in nonequilibrium warm dense plasmas, liquid metals, and hot solids, a fundamental property for which various models offer diverging predictions. To this end, a Kubo relation for the electron-ion coupling parameter is introduced, which includes self-consistently the quantum, thermal, nonlinear, and strong coupling effects that coexist in materials at the confluence of solids and plasmas. Most importantly, like other Kubo relations widely used for calculating electronic conductivities, the expression can be evaluated using quantum molecular dynamics simulations.

View Article and Find Full Text PDF

The manner in which transport properties vary over the entire parameter-space of coupling and magnetization strength is explored. Four regimes are identified based on the relative size of the gyroradius compared to other fundamental length scales: the collision mean free path, Debye length, distance of closest approach, and interparticle spacing. Molecular dynamics simulations of self-diffusion and temperature anisotropy relaxation spanning the parameter space are found to agree well with the predicted boundaries.

View Article and Find Full Text PDF

We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us (1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, (2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and (3) to explain how the concept of the Coulomb logarithm emerges at a high enough temperature but disappears at a low enough temperature.

View Article and Find Full Text PDF

Self-diffusion and interdiffusion coefficients of binary ionic mixtures are evaluated using the effective potential theory (EPT), and the predictions are compared with the results of molecular dynamics simulations. We find that EPT agrees with molecular dynamics from weak coupling well into the strong-coupling regime, which is a similar range of coupling strengths as previously observed in comparisons with the one-component plasma. Within this range, typical relative errors of approximately 20% and worst-case relative errors of approximately 40% are observed.

View Article and Find Full Text PDF

We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the equilibrium radial density distribution based on an average atom model and the integral equations theory of fluids. The model should find broad use in applications where nonideal plasma conditions are traversed, including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and numerous present-day high energy density laboratory experiments.

View Article and Find Full Text PDF

We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett.

View Article and Find Full Text PDF

Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S. D.

View Article and Find Full Text PDF

We develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state.

View Article and Find Full Text PDF

The shear viscosity coefficient of the one-component plasma is calculated with unprecedented accuracy using equilibrium molecular dynamics simulations and the Green-Kubo relation. Numerical and statistical uncertainties and their mitigation for improving accuracy are analyzed. In the weakly coupled regime, our results agree with the Landau-Spitzer prediction.

View Article and Find Full Text PDF

A plasma transport theory that spans weak to strong coupling is developed from a binary collision picture, but where the interaction potential is taken to be an effective potential that includes correlation effects and screening self-consistently. This physically motivated approach provides a practical model for evaluating transport coefficients across coupling regimes. The theory is shown to compare well with classical molecular dynamics simulations of temperature relaxation in electron-ion plasmas as well as simulations and experiments of self-diffusion in one-component plasmas.

View Article and Find Full Text PDF

A practical physically motivated interpolation formula is presented for the self-diffusion coefficient in Yukawa one-component plasmas that is valid for a wide range of inverse screening lengths and over the entire fluid region.

View Article and Find Full Text PDF

The complementarity of the liquid and plasma descriptions of the classical one-component plasma is explored by studying wave number and frequency dependent dynamical quantities: the dynamical structure factor (DSF) and the dynamic local field correction (LFC). Accurate molecular dynamics (MD) simulations are used to validate and test models of the DSF and LFC. Our simulations, which span the entire fluid regime (Γ=0.

View Article and Find Full Text PDF

Molecular dynamics simulations are used to investigate the diffusion properties of one-component plasmas and binary ionic mixtures from the weakly to the strongly coupled regimes. A physically motivated model for the diffusivities is proposed that reproduces the simulation data and gives insight into the nature of ionic motions and interactions in plasmas across the coupling regimes. The model extends the widely used Chapman-Spitzer theory from the weakly to the moderately coupled regime.

View Article and Find Full Text PDF

Using numerical simulations, we investigate the equilibrium dynamics of a single-component fluid with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. Since the Yukawa potential can describe the ion-ion interactions in a plasma, our results have significant applicability for both analyzing and interpreting the results of x-ray scattering data from high-power lasers and fourth-generation light sources.

View Article and Find Full Text PDF

We show that the hydrodynamic description can be applied to modeling the ionic response in dense plasmas for a wide range of length scales that are experimentally accessible. Using numerical simulations for the Yukawa model, we find that the maximum wave number k(max) at which the hydrodynamic description applies is independent of the coupling strength, given by k(max)λ(s)≃0.43, where λ(s) is the ionic screening length.

View Article and Find Full Text PDF

We present a model for the rate of temperature relaxation between electrons and ions in plasmas. The model includes self-consistently the effects of particle screening, electron degeneracy, and correlations between electrons and ions. We successfully validate the model over a wide range of plasma coupling against molecular-dynamics simulations of classical plasmas of like-charged electrons and ions.

View Article and Find Full Text PDF

Molecular-dynamics simulations are used to investigate temperature relaxation between electrons and ions in a fully ionized, classical Coulomb plasma with minimal assumptions. Recombination is avoided by using like charges. The relaxation rate agrees with theory in the weak coupling limit (g identical with potential/kinetic energy << 1), whereas it saturates at g > 1 due to correlation effects.

View Article and Find Full Text PDF

We rigorously derive an analytical expression for the energy equilibration rate in nonequilibrium electron-ion systems that is valid for a large class of systems including solid and liquid metals, warm dense matter, and hot, weakly coupled plasmas. To this end we first derive a generalized Langevin equation that describes the motion of the classical ions in the quantum mechanical environment of the electrons. A general expression for the energy relaxation rate is then obtained assuming that each subsystem is in thermal equilibrium with itself.

View Article and Find Full Text PDF
Crystal nucleation in the one-component plasma.

Phys Rev E Stat Nonlin Soft Matter Phys

May 2006

We have performed molecular dynamics simulations to study the kinetics of crystal nucleation in the one-component plasma. We have monitored nucleation in the supercooled liquid phase by following the time evolution of the size distribution of crystal nuclei formed during the phase transition. Although several observations are consistent with classical nucleation theory such as transient effects and the existence of a free-energy barrier to crystallization, we could not unambiguously identify a critical size for the crystal nuclei formed within the metastable phase.

View Article and Find Full Text PDF