Publications by authors named "Jerome Bourgeais"

The mitochondrial Ca2+ uniporter (MCU) plays crucial role in intramitochondrial Ca2+ uptake, allowing Ca2+-dependent activation of oxidative metabolism. In recent decades, the role of MCU pore-forming proteins has been highlighted in cancer. However, the contribution of MCU-associated regulatory proteins mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2) to pathophysiological conditions has been poorly investigated.

View Article and Find Full Text PDF

Beyond their link to metabolic issues like type 2 diabetes, factors like lifestyle, environment, and excess weight may also influence fertility. Fibroblast growth factor 21 (FGF21), a liver-derived hormone linked to energy balance, has recently emerged as a potential player in female mammalian reproduction. In male, only two studies have described potential effects of FGF21 on fertility.

View Article and Find Full Text PDF
Article Synopsis
  • * It involved a comparison between 20 healthy controls and 17 ALS patients, revealing distinct metabolic profiles and specific metabolites like citramalate that could serve as biomarkers for ALS.
  • * The study found global dysfunction in ALS patients' muscles, with notable changes in antioxidant enzyme levels and mitochondrial activity, highlighting potential new avenues for diagnosis and prognosis.
View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is characterized by the accumulation of undifferentiated blast cells in the bone marrow and blood. In most cases of AML, relapse frequently occurs due to resistance to chemotherapy. Compelling research results indicate that drug resistance in cancer cells is highly dependent on the intracellular levels of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Background And Aims: Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX.

View Article and Find Full Text PDF

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism.

View Article and Find Full Text PDF

Bone marrow mesenchymal stromal cells (MSCs) play an essential role in the regulation of normal and leukemic hematopoiesis. Their multipotent potential of differentiation also makes them an interesting therapeutic tool. Among factors involved in the regulation of MSCs, energy metabolism plays a key role in their proliferation and differentiation.

View Article and Find Full Text PDF

Metabolic flexibility is the ability of a cell to adapt its metabolism to changes in its surrounding environment. Such adaptability, combined with apoptosis resistance provides cancer cells with a survival advantage. Mitochondrial voltage-dependent anion channel 1 (VDAC1) has been defined as a metabolic checkpoint at the crossroad of these two processes.

View Article and Find Full Text PDF

The bone marrow (BM) microenvironment plays a crucial role in the development and progression of leukemia (AML). Intracellular reactive oxygen species (ROS) are involved in the regulation of the biology of leukemia-initiating cells, where the antioxidant enzyme GPx-3 could be involved as a determinant of cellular self-renewal. Little is known however about the role of the microenvironment in the control of the oxidative metabolism of AML cells.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a plasma cell neoplasm that remains incurable due to innate or acquired resistance. Although MM cells produce high intracellular levels of reactive oxygen species (ROS), we hypothesised that they could remain sensitive to ROS unbalance. We tested if the inhibition of ROS, on one hand, or the overproduction of ROS, on the other, could (re)sensitise cells to bortezomib (BTZ).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the progressive death of both upper and lower motor neurons. The disease presents a poor prognosis, and patients usually die 2-5 years after the onset of symptoms. The hallmark of this disease is the presence of phosphorylated and ubiquitinated aggregates containing trans-active response DNA-binding protein-43 (TDP-43) in the cytoplasm of motor neurons.

View Article and Find Full Text PDF

Cytoplasmic TDP-43 aggregates are a hallmark of amyotrophic lateral sclerosis (ALS). Today, only two drugs are available for ALS treatment, and their modest effect prompts researchers to search for new therapeutic options. TDP-43 represents one of the most promising targets for therapeutic intervention, but reliable and reproducible in vitro protocols for TDP-43-mediated toxicity are lacking.

View Article and Find Full Text PDF
Article Synopsis
  • The original article left out some acknowledgments regarding funding.
  • The missing information stated that the research was supported by grants to KZ from UL and L-CNRS.
  • The correction has been made in both the PDF and HTML versions of the article.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that blocking gap junctions, which facilitate communication between BM-MSCs and leukemic cells, could alter these interactions and potentially reduce chemoresistance in AML.
  • * The gap junction disruptor carbenoxolone (CBX) showed promise as a treatment, demonstrating an ability to induce cell death in AML cells without harming normal progenitor cells, and enhancing the effectiveness of the chemotherapy drug cytarabine.
View Article and Find Full Text PDF

Acute Myeloid Leukemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. n-3 polyunsaturated fatty acids (PUFAs), present in fish oil (FO) at high concentrations, have antitumoral properties in various cancer models. We investigated the effects of two n-3 PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in AML cell lines and primary AML blasts.

View Article and Find Full Text PDF

Signal transducers and activators of transcription 5 (STAT5s) are crucial effectors of tyrosine kinase oncogenes in myeloid leukemias. Inhibition of STAT5 would contribute to reducing the survival of leukemic cells and also tackling their chemoresistance. In a first screening experiment, we identified hit 13 as able to inhibit STAT5 phosphorylation and leukemic cell growth.

View Article and Find Full Text PDF

Bone marrow (BM)-derived mesenchymal stromal cells (MSCs) frequently display alterations in several hematologic disorders, such as acute lymphoid leukemia, acute myeloid leukemia (AML), and myelodysplastic syndromes. In acute leukemias, it is not clear whether MSC alterations contribute to the development of the malignant clone or whether they are simply the effect of tumor expansion on the microenvironment. We extensively investigated the characteristics of MSCs isolated from the BM of patients with de novo AML at diagnosis (L-MSCs) in terms of phenotype (gene and protein expression, apoptosis and senescence levels, DNA double-strand break formation) and functions (proliferation and clonogenic potentials, normal and leukemic hematopoiesis-supporting activity).

View Article and Find Full Text PDF

Genetic deletion of the tyrosine kinase JAK2 or the downstream transcription factor STAT5 in liver impairs growth hormone (GH) signalling and thereby promotes fatty liver disease. Hepatic STAT5 deficiency accelerates liver tumourigenesis in presence of high GH levels. To determine whether the upstream kinase JAK2 exerts similar functions, we crossed mice harbouring a hepatocyte-specific deletion of JAK2 (JAK2) to GH transgenic mice (GH) and compared them to GHSTAT5 mice.

View Article and Find Full Text PDF

STAT5 transcription factors are frequently activated in hematopoietic neoplasms and are targets of various tyrosine kinase oncogenes. Evidences for a crosstalk between STAT5 and reactive oxygen species (ROS) metabolism have recently emerged but mechanisms involved in STAT5-mediated regulation of ROS still remain elusive. We demonstrate that sustained activation of STAT5 induced by Bcr-Abl in chronic myeloid leukemia (CML) cells promotes ROS production by repressing expression of two antioxidant enzymes, catalase and glutaredoxin-1(Glrx1).

View Article and Find Full Text PDF

The interactions of multiple myeloma (MM) cells with their microenvironment are crucial for pathogenesis. MM cells could interact differentially with their microenvironment depending on the type of cyclin D they express. We established several clones that constitutively express cyclin D1 from the parental RPMI8226 MM cell line and analyzed the impact of cyclin D1 expression on cell behavior.

View Article and Find Full Text PDF

STAT3 and STAT5 (STAT3/5) proteins are crucial mediators of cytokine- or growth factor-induced cell survival and proliferation. These transcription factors are frequently overactivated in a variety of solid tumors and hematopoietic neoplasms and are targets of various oncogenes with tyrosine kinase activity. STAT3/5 proteins regulate expression of genes involved in survival and proliferation in the nucleus and interact with signaling pathways in the cytoplasm.

View Article and Find Full Text PDF