The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation.
View Article and Find Full Text PDFThis study has evaluated the swelling of meniscal test samples associated with altered osmotic environments. Meniscal samples were cut and weighed, then placed in one of 3 solutions: deionized water, phosphate buffered saline (PBS) or 2× concentration PBS. The amount of swelling in meniscal samples was solution independent with average swelling greater than 20%.
View Article and Find Full Text PDFThe meniscal roots, or insertional ligaments, firmly attach the menisci to tibial plateau. These strong attachments anchor the menisci and allow for the generation of hoop stress in the tissue. The meniscal roots have a ligament-like structure that transitions into the fibrocartilagenous structure of the meniscal body.
View Article and Find Full Text PDFBackground: Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors.
View Article and Find Full Text PDFNesprins are a multi-isomeric family of spectrin-repeat (SR) proteins, predominantly known as nuclear envelope scaffolds. However, isoforms that function beyond the nuclear envelope remain poorly examined. Here, we characterize p50(Nesp1), a 50-kD isoform that localizes to processing bodies (PBs), where it acts as a microtubule-associated protein capable of linking mRNP complexes to microtubules.
View Article and Find Full Text PDFThe collagenous structure of the knee menisci is integral to the mechanical integrity of the tissue and the knee joint. The tie-fibre structure of the tissue has largely been neglected, despite previous studies demonstrating its correlation with radial stiffness. This study has evaluated the structure of the tie-fibres of bovine menisci using 2D and 3D microscopy techniques.
View Article and Find Full Text PDFBackground: The collagenous structure of menisci is a complex network of circumferentially oriented fascicles and interwoven radially oriented tie-fibres. To date, examination of this micro- architecture has been limited to two-dimensional imaging techniques. The purpose of this study was to evaluate the ability of the three-dimensional imaging technique; optical projection tomography (OPT), to visualize the collagenous structure of the meniscus.
View Article and Find Full Text PDFDNA damaging agents, including those used in the clinic, activate cell cycle checkpoints, which blocks entry into mitosis. Given that checkpoint override results in cell death via mitotic catastrophe, inhibitors of the DNA damage checkpoint are actively being pursued as chemosensitization agents. Here we explored the effects of gemcitabine in combination with Chk1 inhibitors in a panel of pancreatic cancer cell lines and found variable abilities to override the S phase checkpoint.
View Article and Find Full Text PDFCRMP-2 plays a pivotal role in promoting axon formation, neurite outgrowth and elongation in neuronal cells. CRMP-2's role in other cells is unknown. Our preliminary results showed CRMP-2 expression in cilia of fibroblasts.
View Article and Find Full Text PDFObjective: Mesenchymal progenitor cells (MPCs) can differentiate into osteoblasts, adipocytes, and chondrocytes, and are in part responsible for maintaining tissue integrity. Recently, a progenitor cell population has been found within the synovial fluid that shares many similarities with bone marrow MPCs. These synovial fluid MPCs (sfMPCs) share the ability to differentiate into bone and fat, with a bias for cartilage differentiation.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) and rheumatoid arthritis (RA) are diseases which result in the degeneration of the joint surface articular cartilage. Matrix metalloproteinases (MMPs) are enzymes that aid in the natural remodelling of tissues throughout the body including cartilage. However, some MMPs have been implicated in the progression of OA and RA as their expression levels and activation states can change dramatically with the onset of disease.
View Article and Find Full Text PDFBendamustine (BDM) is an active chemotherapeutic agent approved in the U. S. for treating chronic lymphocytic leukemia and non-Hodgkin lymphoma.
View Article and Find Full Text PDFBackground: Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells.
View Article and Find Full Text PDFBackground: In most cells, the centriolar component of the centrosome can function as a basal body supporting the formation of a primary cilium, a non-motile sensory organelle that monitors information from the extracellular matrix and relays stimuli into the cell via associated signaling pathways. Defects in the formation and function of primary cilia underlie multiple human diseases and are hallmarks of malignancy. The RNA silencing pathway is involved in the post-transcriptional silencing of > 50% of mRNA that occurs within GW/P bodies.
View Article and Find Full Text PDFThe mitotic checkpoint functions to ensure accurate chromosome segregation by regulating the progression from metaphase to anaphase. Once the checkpoint has been satisfied, it is inactivated in order to allow the cell to proceed into anaphase and complete the cell cycle. The minus end-directed microtubule motor dynein/dynactin has been implicated in the silencing of the mitotic checkpoint by "stripping" checkpoint proteins off kinetochores.
View Article and Find Full Text PDF??Although injuries to the medial collateral ligament (MCL) can heal functionally without surgical intervention, the collagen fibers in the healing tissue remain compromised. The molecular basis for this poor healing potential was investigated by examining extracellular matrix-modifying molecules such as bone morphogenetic protein 1 (BMP-1), procollagen C proteinase enhancer (PCOLCE), lysyl oxidase (LOX), and transforming growth factor beta 1 (TGF-β1) involved in collagen fibrillogenesis during normal early postnatal ligament maturation and at comparable intervals after MCL injury. Samples of midsections of rabbit MCLs were collected from 3-, 6-, 14-, and 52-week-old normal animals and at 3, 6, and 14 weeks postinjury.
View Article and Find Full Text PDFAutoantibodies to the centromere proteins (CENP), which are major constituents of the primary constriction of metaphase chromosomes, were first described in 1980. In those seminal publications and 30 years of research that have followed, a number of CENP have been identified as autoantibody targets in human diseases. Historically, autoantibodies directed to CENP-A, -B and -C have been considered relatively specific biomarkers for limited cutaneous systemic sclerosis (lcSSc) or the calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia (CREST) syndrome.
View Article and Find Full Text PDFThe synovium is a thin connective tissue that lines the joint space of free moving articulations. In this report, the expression, structure, and composition of non-motile (primary) cilia in fibroblast-like synoviocytes (FLS) that populate the synovium have been studied. Primary cilia are non-motile, microtubule-based organelles that have been found in a variety of vertebrate cell types.
View Article and Find Full Text PDFThe expansive family of metazoan ADP-ribosylation factor and ADP-ribosylation factor-like small GTPases is known to play essential roles in modulating membrane trafficking and cytoskeletal functions. Here, we present the crystal structure of ARL6, mutations in which cause Bardet-Biedl syndrome (BBS3), and reveal its unique ring-like localization at the distal end of basal bodies, in proximity to the so-called ciliary gate where vesicles carrying ciliary cargo fuse with the membrane. Overproduction of GDP- or GTP-locked variants of ARL6/BBS3 in vivo influences primary cilium length and abundance.
View Article and Find Full Text PDFBackground: Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas.
View Article and Find Full Text PDFTrimethylation of lysine 9 on histone H3 (H3K9me3) is known both to be necessary for proper chromosome segregation and to increase in late G2. We investigated the role of late G2 methylation, specifically in mitotic progression, by inhibiting methylation for 2 hours prior to mitosis using the general methylation inhibitor adenosine dialdehyde (AdOx). AdOx inhibits all methylation events within the cell but, by shortening the treatment length to 2 hours and studying mitotic cells, the only methylation events that are affected are those that occur in late G2.
View Article and Find Full Text PDFThe centrosome is an organelle that acts as a microtubule-organizing center (MTOC) throughout the cell cycle. Within the centrosome are often two components that each have an ability to organize microtubule structures: the centriole that has the potential to function as a basal body and nucleate a cilium or a flagellum and a mass of protein material that in the presence of a centriole is commonly referred to as the pericentriolar material (PCM) that organizes cytoplasmic and spindle microtubule arrays. One characteristic of a large variety of cells is the ability to express a non-motile primary cilium.
View Article and Find Full Text PDFThe primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range.
View Article and Find Full Text PDF