Inflammation in HIV infection is predictive of non-AIDS morbidity and death, higher set point plasma virus load and virus acquisition; thus, therapeutic agents are in development to reduce its causes and consequences. However, inflammation may simultaneously confer both detrimental and beneficial effects. This dichotomy is particularly applicable to type I interferons (IFN-I) which, while contributing to innate control of infection, also provide target cells for the virus during acute infection, impair CD4 T-cell recovery, and are associated with disease progression.
View Article and Find Full Text PDFSeparate ligand-receptor paradigms are commonly used for each type of interferon (IFN). However, accumulating evidence suggests that type I and type II IFNs may not be restricted to independent pathways. Using different cell types deficient in IFNAR1, IFNAR2, IFNGR1, IFNGR2 and IFN-γ, we evaluated the contribution of each element of the IFN system to the activity of type I and type II IFNs.
View Article and Find Full Text PDFRegulatory T cells (Tregs) play an important role in protection against autoimmune disease and are also known to be potent inhibitors of anti-tumor immune responses. The New Zealand Black (NZB) mouse is a murine model for both autoimmune diseases, since high levels of autoantibodies are present, and human CLL, due to the expansion of malignant B-1 cells. In this study, we examined the functional role of CD4(+)CD25(+) Foxp3(+) Tregs in these different manifestations.
View Article and Find Full Text PDFType I interferons (IFNs) are multifunctional cytokines that activate cellular responses by binding a common receptor consisting of two subunits, IFNAR-1 and IFNAR-2. Although the binding of IFNs to IFNAR-2 is well characterized, the binding to the lower affinity IFNAR-1 remains less well understood. Previous reports identified a region of human IFN-alpha2 on the B and C helices ("site 1A": N65, L80, Y85, Y89) that plays a key role in binding IFNAR-1 and contributes strongly to differential activation by various type I IFNs.
View Article and Find Full Text PDFType I interferons (IFNs) are a family of cytokines defined by their antiviral activity but with a broad spectrum of biological activities, including antiproliferative, antitumor, and immunomodulatory effects. Mirroring these activities are diverse therapeutic applications to viral infections, antitumor therapy, and multiple sclerosis. The type I IFNs all signal through a common heterodimeric receptor.
View Article and Find Full Text PDFWith the sequencing of the human genome nearing completion, it appears that all members of the class II cytokine receptor family (CRF2) have been identified and partially characterized. The entire family is composed of exactly one dozen members. Eleven of them combine as various heterodimers to transduce signals across the cellular membrane for 27 cytokines divided into four structurally related groups: 6 cytokines of the IL-10 family, 17 type I IFNs, 1 type II IFN and 3 IFN-lambdas.
View Article and Find Full Text PDFCytokine Growth Factor Rev
February 2004
Expanded genomic information has driven the discovery of new members of the human Class II family of cytokine receptors (CRF2), which now includes 12 proteins. The corresponding cytokines have been identified, paired with their receptors and initially characterized for function. These cytokines include: a new human Type I IFN, IFN-kappa; molecules related to IL-10 (IL-19, IL-20, IL-22, IL-24, IL-26); and IFN-lambdas (IL-28/29), which have antiviral and cell stimulatory activities reminiscent of Type I IFNs, but act through a distinct receptor.
View Article and Find Full Text PDFWe report here the identification of a ligand-receptor system that, upon engagement, leads to the establishment of an antiviral state. Three closely positioned genes on human chromosome 19 encode distinct but paralogous proteins, which we designate interferon-lambda1 (IFN-lambda1), IFN-lambda2 and IFN-lambda3 (tentatively designated as IL-29, IL-28A and IL-28B, respectively, by HUGO). The expression of IFN-lambda mRNAs was inducible by viral infection in several cell lines.
View Article and Find Full Text PDF