Introduction: We tested the hypothesis that breathing heliox, to attenuate the mechanical constraints accompanying the decline in pulmonary function with aging, improves exercise performance.
Methods: Fourteen endurance-trained older men (67.9 ± 5.
We have examined the importance of three long-standing questions concerning chemoreceptor influences on cardiorespiratory function which are currently experiencing a resurgence of study among physiologists and clinical investigators. Firstly, while carotid chemoreceptors (CB) are required for hypoxic stimulation of breathing, use of an isolated, extracorporeally perfused CB preparation in unanaesthetized animals with maintained tonic input from the CB, reveals that extra-CB hypoxaemia also provides dose-dependent ventilatory stimulation sufficient to account for 40-50% of the total ventilatory response to steady-state hypoxaemia. Extra-CB hyperoxia also provides a dose- and time-dependent hyperventilation.
View Article and Find Full Text PDFSubstantial advances have been made recently into the discovery of fundamental mechanisms underlying the neural control of breathing and even some inroads into translating these findings to treating breathing disorders. Here, we review several of these advances, starting with an appreciation of the importance of V̇:V̇CO:PaCO relationships, then summarizing our current understanding of the mechanisms and neural pathways for central rhythm generation, chemoreception, exercise hyperpnea, plasticity, and sleep-state effects on ventilatory control. We apply these fundamental principles to consider the pathophysiology of ventilatory control attending hypersensitized chemoreception in select cardiorespiratory diseases, the pathogenesis of sleep-disordered breathing, and the exertional hyperventilation and dyspnea associated with aging and chronic diseases.
View Article and Find Full Text PDFMed Sci Sports Exerc
December 2023
Nearly 40 yr ago, Professor Dempsey delivered the 1985 ACSM Joseph B. Wolffe Memorial Lecture titled: "Is the lung built for exercise?" Since then, much experimental work has been directed at enhancing our understanding of the functional capacity of the respiratory system by applying complex methodologies to the study of exercise. This review summarizes a symposium entitled: "Revisiting 'Is the lung built for exercise?'" presented at the 2022 American College of Sports Medicine annual meeting, highlighting the progress made in the last three-plus decades and acknowledging new research questions that have arisen.
View Article and Find Full Text PDFPhysical activity is the most common source of heat strain for humans. The thermal strain of physical activity causes overbreathing (hyperventilation) and this has adverse physiological repercussions. The mechanisms underlying heat-induced hyperventilation during exercise are unknown, but recent evidence supports a primary role of carotid body hyperexcitability (increased tonic activity and sensitivity) underpinning hyperventilation in passively heated humans.
View Article and Find Full Text PDFIn health, the near-eucapnic, highly efficient hyperpnea during mild-to-moderate intensity exercise is driven by three obligatory contributions, namely, feedforward central command from supra-medullary locomotor centers, feedback from limb muscle afferents, and respiratory CO exchange (V̇CO). Inhibiting each of these stimuli during exercise elicits a reduction in hyperpnea even in the continuing presence of the other major stimuli. However, the relative contribution of each stimulus to the hyperpnea remains unknown as does the means by which V̇CO2 is sensed.
View Article and Find Full Text PDFHumans hyperventilate under heat and cold strain. This hyperventilatory response has detrimental consequences including acid-base dysregulation, dyspnoea, decreased cerebral blood flow and accelerated brain heating. The ventilatory response to hypoxia is exaggerated under whole-body heating and cooling, indicating that altered carotid body function might contribute to thermally mediated hyperventilation.
View Article and Find Full Text PDFIncreased ventilation relative to metabolic demands, indicating alveolar hyperventilation and/or increased physiological dead space (excess ventilation), is a key cause of exertional dyspnoea. Excess ventilation has assumed a prominent role in the functional assessment of patients with heart failure (HF) with reduced (HFrEF) or preserved (HFpEF) ejection fraction, pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). We herein provide the key pieces of information to the caring physician to 1) gain unique insights into the seeds of patients' shortness of breath and 2) develop a rationale for therapeutically lessening excess ventilation to mitigate this distressing symptom.
View Article and Find Full Text PDFThe clinical presentation of COVID-19 due to infection with SARS-CoV-2 is highly variable with the majority of patients having mild symptoms while others develop severe respiratory failure. The reason for this variability is unclear but is in critical need of investigation. Some COVID-19 patients have been labelled with 'happy hypoxia', in which patient complaints of dyspnoea and observable signs of respiratory distress are reported to be absent.
View Article and Find Full Text PDFIn the healthy, untrained young adult, a case is made for a respiratory system (airways, pulmonary vasculature, lung parenchyma, respiratory muscles, and neural ventilatory control system) that is near ideally designed to ensure a highly efficient, homeostatic response to exercise of varying intensities and durations. Our aim was then to consider circumstances in which the intra/extrathoracic airways, pulmonary vasculature, respiratory muscles, and/or blood-gas distribution are underbuilt or inadequately regulated relative to the demands imposed by the cardiovascular system. In these instances, the respiratory system presents a significant limitation to O transport and contributes to the occurrence of locomotor muscle fatigue, inhibition of central locomotor output, and exercise performance.
View Article and Find Full Text PDFKey Points: The carotid chemoreceptor mediates the ventilatory and muscle sympathetic nerve activity (MSNA) responses to hypoxia and contributes to tonic sympathetic and respiratory drives. It is often presumed that both excitatory and inhibitory tests of chemoreflex function show congruence in the end-organ responses. Ventilatory and neurocirculatory (MSNA, blood pressure and heart rate) responses to chemoreflex inhibition elicited by transient hyperoxia and to chemoreflex excitation produced by steady-state eucapnic hypoxia were measured in a cohort of 82 middle-aged individuals.
View Article and Find Full Text PDFThis viewpoint is the result of a Horizon Round Table discussion of Exercise and Aging held during the 2017 Saltin International Graduate School in Exercise and Clinical Physiology in Gatineau, Quebec. This expert panel discussed key issues and approaches to future research into aging, across human physiological systems, current societal concerns, and funding approaches. Over the 60-min round table discussion, 3 major themes emerged that the panel considered to be "On the Horizon" of aging research.
View Article and Find Full Text PDFCentral sleep apnea is prevalent in patients with heart failure, healthy individuals at high altitudes, and chronic opiate users and in the initiation of "mixed" (that is, central plus obstructive apneas). This brief review focuses on (a) the causes of repetitive, cyclical central apneas as mediated primarily through enhanced sensitivities in the respiratory control system and (b) treatment of central sleep apnea through modification of key components of neurochemical control as opposed to the current universal use of positive airway pressure.
View Article and Find Full Text PDFWe examine 2 means by which the healthy respiratory system contributes to exercise limitation. These include the activation of respiratory and locomotor muscle afferent reflexes, which constrain blood flow and hasten fatigue in both sets of muscles, and the excessive increases in pulmonary vascular pressures at high cardiac outputs, which constrain O transport and precipitate maladaptive right ventricular remodeling in endurance-trained subjects.
View Article and Find Full Text PDFWe examine recent findings that have revealed interdependence of function within the chemoreceptor pathway regulating breathing and sympathetic vasomotor activity and the hypersensitization of these reflexes in chronic disease states. Recommendations are made as to how these states of hyperreflexia in chemoreceptors and muscle afferents might be modified in treating sleep apnea, drug-resistant hypertension, chronic heart failure-induced sympathoexcitation, and the exertional dyspnea of chronic obstructive pulmonary disease.
View Article and Find Full Text PDFSympathetically induced vasoconstrictor modulation of local vasodilation occurs in contracting skeletal muscle during exercise to ensure appropriate perfusion of a large active muscle mass and to maintain also arterial blood pressure. In this synthesis, we discuss the contribution of group III-IV muscle afferents to the sympathetic modulation of blood flow distribution to locomotor and respiratory muscles during exercise. This is followed by an examination of the conditions under which diaphragm and locomotor muscle fatigue occur.
View Article and Find Full Text PDFCold Spring Harb Perspect Med
May 2018
The biological responses to acute and chronic exercise are marked by a high level of physiological redundancy that operates at various levels of integration, including the molecular, cellular, organ-system, and whole-body scale. During acute exercise, this redundancy protects whole-body homeostasis in the face of 10-fold or more increases in whole-body metabolic rate. In some cases, there are "trade-offs" between optimizing the performance of a given organ or system versus whole-body performance.
View Article and Find Full Text PDFSleep apnea is highly prevalent in patients with cardiovascular disease. These disordered breathing events are associated with a profile of perturbations that include intermittent hypoxia, oxidative stress, sympathetic activation, and endothelial dysfunction, all of which are critical mediators of cardiovascular disease. Evidence supports a causal association of sleep apnea with the incidence and morbidity of hypertension, coronary heart disease, arrhythmia, heart failure, and stroke.
View Article and Find Full Text PDF