Zoonoses Public Health
February 2019
From 2007 through 2010, the Netherlands experienced the largest Q fever epidemic ever reported. This study integrates the outcomes of a multidisciplinary research programme on spatial airborne transmission of Coxiella burnetii and reflects these outcomes in relation to other scientific Q fever studies worldwide. We have identified lessons learned and remaining knowledge gaps.
View Article and Find Full Text PDFA biologic wastewater treatment plant was identified as a common source for 2 consecutive Legionnaires' disease clusters in the Netherlands in 2016 and 2017. Sequence typing and transmission modeling indicated direct and long-distance transmission of Legionella, indicating this source type should also be investigated in sporadic Legionnaires' disease cases.
View Article and Find Full Text PDFBackground: In spring 2008, a goat farm experiencing Q fever abortions ("Farm A") was identified as the probable source of a human Q fever outbreak in a Dutch town. In 2009, a larger outbreak with 347 cases occurred in the town, despite no clinical Q fever being reported from any local farm.
Methods: Our study aimed to identify the source of the 2009 outbreak by applying a combination of interdisciplinary methods, using data from several sources and sectors, to investigate seventeen farms in the area: namely, descriptive epidemiology of notified cases; collation of veterinary data regarding the seventeen farms; spatial attack rate and relative risk analyses; and GIS mapping of farms and smooth incidence of cases.
Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment.
View Article and Find Full Text PDFBackground: Atmospheric dispersion models (ADMs) may help to assess human exposure to airborne pathogens. However, there is as yet limited quantified evidence that modelled concentrations are indeed associated to observed human incidence.
Methods: We correlated human Q fever (caused by the bacterium Coxiella burnetii) incidence data in the Netherlands to modelled concentrations from three spatial exposure models: 1) a NULL model with a uniform concentration distribution, 2) a DISTANCE model with concentrations proportional to the distance between the source and residential addresses of patients, and 3) concentrations modelled by an ADM using three simple emission profiles.
Background: From 2007 to 2010, (the southern part of) the Netherlands experienced a large Q fever epidemic, with more than 4,000 reported symptomatic cases. Approximately 1 - 5% of the acute Q fever patients develop chronic Q fever. A high IgG antibody titre against phase I of Coxiella burnetii during follow-up is considered a marker of chronic Q fever.
View Article and Find Full Text PDFBackground: From 2007 to 2009, The Netherlands experienced a major Q fever epidemic, with higher hospitalization rates than the 2-5% reported in the literature for acute Q fever pneumonia and hepatitis. We describe epidemiological and clinical features of hospitalized acute Q fever patients and compared patients presenting with Q fever pneumonia with patients admitted for other forms of community-acquired pneumonia (CAP). We also examined whether proximity to infected ruminant farms was a risk factor for hospitalization.
View Article and Find Full Text PDFBackground: Source identification in areas with outbreaks of airborne pathogens is often time-consuming and expensive. We developed a model to identify the most likely location of sources of airborne pathogens.
Methods: As a case study, we retrospectively analyzed three Q fever outbreaks in the Netherlands in 2009, each with suspected exposure from a single large dairy goat farm.