Introduction: Emergency Medicine (EM) personnel in both military and civilian prehospital settings are often exposed to stressful and extreme events. Therefore, a cross-pollination between both contexts in terms of coping strategies may generate new information for purposes of training, prevention, and support programs. In the current study, we aimed at comparing both contexts to understand the type of stress events personnel experience; whether experience differs between civilian and military personnel; and how they cope with it.
View Article and Find Full Text PDFPhotochem Photobiol
September 2015
Within the last decade new technologies have been developed and implemented which employ light, often in the presence of a photosensitizer, to inactivate pathogens that reside in human blood products for the purpose of transfusion. These pathogen reduction technologies attempt to find the proper balance between pathogen kill and cell quality. Each system utilizes various chemistries that not only impact which pathogens they can inactivate and how, but also how the treatments affect the plasma and cellular proteins and to what degree.
View Article and Find Full Text PDFNovel pH-responsive assemblies (PEG-lipid:DOPE liposomes) containing tunable and bifunctional phenyl-substituted vinyl ether (PIVE) cross-linkers were prepared. The assemblies consisted of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), acid-cleavable poly(ethylene glycol) (PEG)-conjugated lipids, pDNA, and protamine sulfate (PS). The PIVE linkage was designed to hydrolyze under acidic conditions, and the hydrolysis studies of PEG-lipid compounds containing PIVE at pH 4.
View Article and Find Full Text PDFCationic liposome (lipoplex) and polymer (polyplex)-based vectors have been developed for nonviral gene delivery. These vectors bind DNA and enter cells via endosomes, but intracellular transfer of DNA to the nucleus is inefficient. Here we show that lipoplex and polyplex vectors enter cells in endosomes, activate autophagy and generate tubulovesicular autophagosomes.
View Article and Find Full Text PDFPrompted by the excitement from the description of single layer graphene, increased attention for potential applications in the biomedical field has been recently placed on graphene oxide (GO). Determination of the opportunities and limitations that GO offers in biomedicine are particularly prone to inaccuracies due to wide variability in the preparation methodologies of GO material in different laboratories, that results in significant variation in the purity of the material and the yield of the oxidation reactions, primarily the Hummers method used. Herein, the fabrication of highly pure, colloidally stable, and evenly dispersed GO in physiologically-relevant aqueous buffers in comparison to conventional GO is investigated.
View Article and Find Full Text PDFHuman Adenovirus type 5 (Ad5) has been extensively explored in clinical gene therapy, but its immunogenicity dramatically affects the kinetics and toxicity profile of the vector. We previously designed a variety of artificial lipid bilayer envelopes around the viral capsid to develop safer hybrid vectors. Here, we studied the interaction of enveloped Ad in cationic (DOTAP:Chol) or anionic (DOPE:CHEMS) lipid bilayers with different blood components.
View Article and Find Full Text PDFA new family of heterobifunctional phenyl-substituted vinyl ether (PIVE) coupling agents with tunable acid-sensitivity has been developed. The PIVE compounds are designed to hydrolyze under acidic conditions with hydrolysis rates that can be varied by rational selection of the phenyl ring substituent. These reagents were incorporated within 2-methoxypoly(ethylene glycol) PEG-conjugated 1,3-dioctadecyl-rac-glycerol lipids to produce the acid-cleavable lipopolymers mPEG-[H-PIVE]-DOG, mPEG-[F-PIVE]-DOG, mPEG-[Me-PIVE]-DOG, and mPEG-[MeO-PIVE]-DOG.
View Article and Find Full Text PDFThe design of liposome-nanoparticle hybrids offers a rich toolbox for the fabrication of multifunctional modalities. A self-assembled liposome-gold nanorod hybrid vesicular system that consists of lipid-bilayer-associated gold nanorods designed to allow deep tissue detection, therapy, and monitoring in living animals using multispectral optoacoustic tomography has been fabricated and characterized in vitro and in vivo.
View Article and Find Full Text PDFRecombinant adenovirus (Ad) has shown great promise in gene therapy. Artificial envelopment of adenovirus within lipid bilayers has previously been shown to decrease the immunogenicity and hepatic affinity of naked Ad in vivo. Unfortunately, this also resulted in a significant reduction of gene expression, which we attributed to poor endosomal release of the Ad from its artificial lipid envelope.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) consist of carbon atoms arranged in sheets of graphene rolled up into cylindrical shapes. This class of nanomaterials has attracted attention because of their extraordinary properties, such as high electrical and thermal conductivity. In addition, development in CNT functionalization chemistry has led to an enhanced dispersibility in aqueous physiological media which indeed broadens the spectrum for their potential biological applications including gene delivery.
View Article and Find Full Text PDFWe have covalently grafted aptamers onto carboxylated carbon nanotubes to design a novel vector system that can easily translocate into the cytosol of different cell types independent of receptor-mediated uptake. We propose the use of carbon nanotubes for the efficient intracellular delivery of biologically active aptamers for potential therapeutic applications.
View Article and Find Full Text PDFArsenic trioxide (As(2)O(3)) is a frontline drug for treatment of acute promyelocytic leukemia and is in clinical trials for treatment of other malignancies, including multiple myeloma; however, efforts to expand clinical utility to solid tumors have been limited by toxicity. Nanoparticulate forms of As(2)O(3) encapsulated in 100-nm-scale, folate-targeted liposomes have been developed to lower systematic toxicity and provide a platform for targeting this agent. The resultant arsenic "nanobins" are stable under physiologic conditions but undergo triggered drug release when the pH is lowered to endosomal/lysosomal levels.
View Article and Find Full Text PDFAn improved synthesis of plasmalogen type lipids is described. Transmetalation of lithioalkoxy allyl intermediates with BaI(2) and subsequent alkylation with 1-iodoalkanes enables the stereoselective formation of O-(Z)-alkenyl ether as precursors for the synthesis of plasmenyl- and bisplasmenylcholines. This method provides a simple and adaptable approach for the stereocontrolled synthesis of plasmenyl derivatives with variations at the sn-1, sn-2, and sn-3 positions of the glycerol backbone.
View Article and Find Full Text PDFThis paper reports the creation of Au nanoparticles (AuNP) that are soluble in aqueous solution over a broad range of pH and ionic strength values and that are capable of selective uptake by folate receptor positive (FR+) cancer cells. A novel poly(ethylene glycol) (PEG) construct with thioctic acid and folic acid coupled on opposite ends of the polymer chain was synthesized for targeting the AuNP to FR+ tumor cells via receptor-mediated endocytosis. These folic acid-PEG-thioctic acid conjugates were grafted onto 10-nm-diameter Au particles in aqueous solution.
View Article and Find Full Text PDF