Publications by authors named "Jeroen Van Rie"

The ability of plants to respond to changes in the environment is crucial to their survival and reproductive success. The impact of increasing the atmospheric CO2 concentration (a[CO2]), mediated by behavioral and developmental responses of stomata, on crop performance remains a concern under all climate change scenarios, with potential impacts on future food security. To identify possible beneficial traits that could be exploited for future breeding, phenotypic variation in morphological traits including stomatal size and density, as well as physiological responses and, critically, the effect of growth [CO2] on these traits, was assessed in six wheat relative accessions (including Aegilops tauschii, Triticum turgidum ssp.

View Article and Find Full Text PDF

The wheat flag leaf is the main contributor of photosynthetic assimilates to developing grains. Understanding how canopy architecture strategies affect source strength and yield will aid improved crop design. We used an eight-founder population to investigate the genetic architecture of flag leaf area, length, width and angle in European wheat.

View Article and Find Full Text PDF

Canopy photosynthesis is the sum of photosynthesis of all above-ground photosynthetic tissues. Quantitative roles of nonfoliar tissues in canopy photosynthesis remain elusive due to methodology limitations. Here, we develop the first canopy photosynthesis model incorporating all above-ground photosynthetic tissues and validate this model on wheat with state-of-the-art gas exchange measurement facilities.

View Article and Find Full Text PDF

Although stomata are typically found in greater numbers on the abaxial surface, wheat flag leaves have greater densities on the adaxial surface. We determine the impact of this less common stomatal patterning on gaseous fluxes using a novel chamber that simultaneously measures both leaf surfaces. Using a combination of differential illuminations and CO concentrations at each leaf surface, we found that mesophyll cells associated with the adaxial leaf surface have a higher photosynthetic capacity than those associated with the abaxial leaf surface, which is supported by an increased stomatal conductance (driven by differences in stomatal density).

View Article and Find Full Text PDF

Improving canopy photosynthetic light use efficiency and energy conversion efficiency (ε ) is a major option to increase crop yield potential. However, so far, the diurnal and seasonal variations of canopy light use efficiency (LUE) and ε are largely unknown due to the lack of an efficient method to estimate ε in a high temporal resolution. Here we quantified the dynamic changes of crop canopy LUE and ε during a day and a growing season with the canopy gas exchange method.

View Article and Find Full Text PDF

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca) is a AAA enzyme that uses ATP to remove inhibitors from the active site of Rubisco, the central carboxylation enzyme of photosynthesis. Rca α and β isoforms exist in most higher plant species, with the α isoform being identical to the β form but having an additional 25-45 amino acids at the Rca C terminus, known as the C-terminal extension (CTE). Rca is inhibited by ADP, and the extent of ADP sensitivity of the Rca complex can be modulated by the CTE of the α isoform, particularly in relation to a disulfide bond structure that is specifically reduced by the redox-regulatory enzyme thioredoxin-f.

View Article and Find Full Text PDF

The central enzyme of photosynthesis, Rubisco, is regulated by Rubisco activase (Rca). Photosynthesis is impaired during heat stress, and this limitation is often attributed to the heat-labile nature of Rca. We characterized gene expression and protein thermostability for the three Rca isoforms present in wheat (), namely TaRca1-β, TaRca2-α, and TaRca2-β.

View Article and Find Full Text PDF

Stomata are the primary gatekeepers for CO uptake for photosynthesis and water loss via transpiration and therefore play a central role in crop performance. Although stomatal conductance ( ) and assimilation rate () are often highly correlated, studies have demonstrated an uncoupling between and that can result in sub-optimal physiological processes in dynamic light environments. Wheat ( L.

View Article and Find Full Text PDF

Genes encoding thermostable variants of the photosynthesis heat-labile protein Rubisco activase (Rca) from a wild relative were overexpressed in domesticated rice (). Proteomics was used to quantify the abundance of Rca (Rca-) in the resulting plants. Plants were grown to maturity in growth rooms and from early tillering until immediately prior to anthesis, they were exposed to daytime maximum temperatures of 28, 40, and 45°C and constant night temperatures of 22°C.

View Article and Find Full Text PDF

The cotton leaf worm Spodoptera littoralis is known for causing serious damages to various crops. In this study, the susceptibility/tolerance of this larvae to four Vip3A (Vip3Aa, Vip3Ae, Vip3Ad and Vip3Af) toxins was investigated. UnlikeVip3Ad which showed no activity to S.

View Article and Find Full Text PDF

The mechanistic basis of tolerance to heat stress was investigated in Oryza sativa and two wild rice species, Oryza meridionalis and Oryza australiensis. The wild relatives are endemic to the hot, arid Australian savannah. Leaf elongation rates and gas exchange were measured during short periods of supra-optimal heat, revealing species differences.

View Article and Find Full Text PDF

Global warming causes night temperature (NT) to increase faster than day temperature in the tropics. According to crop growth models, respiration incurs a loss of 40-60% of photosynthate. The thermal sensitivity of night respiration (R(n)) will thus reduce biomass.

View Article and Find Full Text PDF

Binding studies using (125)I-Cry9Ca and biotinylated-Cry1Ba proteins showed the occurrence of independent binding sites for these proteins in Ostrinia nubilalis. Our results, along with previously available binding data, indicate that combinations of Cry1A or Cry1Fa proteins with Cry1Ba and/or Cry9Ca could be a good strategy for the resistance management of O. nubilalis.

View Article and Find Full Text PDF

First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations.

View Article and Find Full Text PDF

Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af proteins from Bacillus thuringiensis were tested for their toxicity against Spodoptera frugiperda and Agrotis ipsilon. Vip3Ad was non-toxic to the two species. Vip3Ae and Vip3Af were significantly more toxic than Vip3Aa against S.

View Article and Find Full Text PDF

Three vip3 genes were identified in two Bacillus thuringiensis Spanish collections. Sequence analysis revealed a novel Vip3 protein class (Vip3C). Preliminary bioassays of larvae from 10 different lepidopteran species indicated that Vip3Ca3 caused more than 70% mortality in four species after 10 days at 4 μg/cm(2).

View Article and Find Full Text PDF

Cry1Fa insecticidal protein was successfully radiolabeled with (125)I-Na. Specific binding to brush border membrane vesicles was shown for the lepidopteran species Ostrinia nubilalis, Spodoptera frugiperda, Spodoptera exigua, Helicoverpa armigera, Heliothis virescens, and Plutella xylostella. Homologous competition assays were performed to obtain equilibrium binding parameters (K(d) [dissociation constant] and R(t) [concentration of binding sites]) for these six insect species.

View Article and Find Full Text PDF

The pore-forming domain of Bacillus thuringiensis insecticidal Cry toxins is formed of seven amphipathic α-helices. Because pore formation is thought to involve conformational changes within this domain, the possible role of its interhelical loops in this crucial step was investigated with Cry9Ca double mutants, which all share the previously characterized R164A mutation, using a combination of homology modeling, bioassays and electrophysiological measurements. The mutations either introduced, neutralized or reversed an electrical charge carried by a single residue of one of the domain I loops.

View Article and Find Full Text PDF

The pore-forming ability of the Bacillus thuringiensis toxin Cry9Ca, its two single-site mutants R164A and R164K, and the 55-kDa fragment resulting from its proteolytic cleavage at R164 was evaluated under a variety of experimental conditions using an electrophysiological assay. All four toxin preparations depolarized the apical membrane of freshly isolated third-instar Manduca sexta midguts bathing in a solution containing 122 mM KCl at pH 10.5, but the 55-kDa fragment was considerably more active than Cry9Ca and its mutants.

View Article and Find Full Text PDF

Background: Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp.

View Article and Find Full Text PDF

The toxicity and pore-forming ability of the Bacillus thuringiensis Cry9Ca insecticidal toxin, its single-site mutants, R164A and R164K, and the 55-kDa fragment resulting from its proteolytic cleavage at residue 164 were investigated using Manduca sexta neonate larvae and fifth-instar larval midgut brush border membrane vesicles, respectively. Neither the mutations nor the proteolytic cleavage altered Cry9Ca toxicity. Compared with Cry1Ac, Cry9Ca and its mutants formed large poorly selective pores in the vesicles.

View Article and Find Full Text PDF

For a long time, it has been assumed that the mode of action of Cry2A toxins was unique and different from that of other three-domain Cry toxins due to their apparent nonspecific and unsaturable binding to an unlimited number of receptors. However, based on the homology of the tertiary structure among three-domain Cry toxins, similar modes of action for all of them are expected. To confirm this hypothesis, binding assays were carried out with (125)I-labeled Cry2Ab.

View Article and Find Full Text PDF

This paper describes a screening strategy incorporating resistant insect lines for discovery of new Bacillus thuringiensis toxins against a background of known genes that would normally mask the activity of additional genes and the application of that strategy. A line of Helicoverpa armigera with resistance to Cry1Ac (line ISOC) was used to screen Cry1Ac-expressing strains of B. thuringiensis for additional toxins with activity against H.

View Article and Find Full Text PDF

Of 188 Australian Bacillus thuringiensis strains screened for genes encoding soluble insecticidal proteins by polymerase chain reaction/restriction-length fragment polymorphism (RFLP) analysis, 87% showed the presence of such genes. Although 135 isolates (72%) produced an RFLP pattern identical to that expected for vip3A genes, 29 isolates possessed a novel vip-like gene. The novel vip-like gene was cloned from B.

View Article and Find Full Text PDF

A novel vip3-related gene was identified in Bacillus thuringiensis. This novel gene is 2,406 bp long and codes for a 91-kDa protein (801 amino acids). This novel protein exhibits between 61 and 62% similarity with Vip3A proteins and is designated Vip3Ba1.

View Article and Find Full Text PDF