Most terrestrial plants engage into arbuscular mycorrhizal (AM) symbiosis with fungi of the phylum Glomeromycota. The initial recognition of the fungal symbiont results in the activation of a symbiosis signalling pathway that is shared with the root nodule symbiosis (common SYM pathway). The subsequent intracellular accommodation of the fungus, and the elaboration of its characteristic feeding structures, the arbuscules, depends on a genetic programme in the plant that has recently been shown to involve the VAPYRIN gene in Medicaco truncatula.
View Article and Find Full Text PDFThe active endogenous dTph1 system of the Petunia hybrida mutator line W138 has been used in several forward-genetic mutant screens that were based on visible phenotypes such as flower morphology and color. In contrast, defective symbiotic phosphate (P(i)) transport in mycorrhizal roots of Petunia is a hidden molecular phenotype as the symbiosis between plant roots and fungi takes place below ground, and, while fungal colonization can be visualized histochemically, P(i) transport and the activity of P(i) transporter proteins cannot be assessed visually. Here, we report on a molecular approach in which expression of a mycorrhiza-inducible bi-functional reporter transgene and insertional mutagenesis in Petunia are combined.
View Article and Find Full Text PDFAnimal-mediated pollination is essential in plant reproductive biology and is often associated with pollination syndromes, sets of floral traits, such as color, scent, shape, or nectar content. Selection by pollinators is often considered a key factor in floral evolution and plant speciation. Our aim is the identification and characterization of the genetic changes that caused the evolution of divergent pollination syndromes in closely related plant species.
View Article and Find Full Text PDFThe two related Petunia species, P. axillaris and P. integrifolia, are sympatric at various locations in South America but do not hybridise.
View Article and Find Full Text PDFA major factor in the evolution of the angiosperms is the adaptation of plants to animal pollinators. The specific morphology of a flower, its color, nectar composition and scent production can all contribute to reproductive success by attracting pollinators and by limiting out-crossing with other species. It has now become feasible to dissect the genetic basis of plant adaptation to different pollinators.
View Article and Find Full Text PDFRapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities.
View Article and Find Full Text PDFIn the genus Petunia, distinct pollination syndromes may have evolved in association with bee-visitation (P. integrifolia spp.) or hawk moth-visitation (P.
View Article and Find Full Text PDFIn the past decade, enormous progress has been made in our understanding of the molecular and genetic control of meristem growth, maintenance and differentiation into plant organs. Several model plants have contributed to our current knowledge of meristem function. Research using Petunia has had a substantial share in this progress.
View Article and Find Full Text PDFThe high copy dTph1 transposon system of Petunia (Solanaceae) is one of the most powerful insertion mutagens in plants, but its activity cannot be controlled in the commonly used mutator strains. We analysed the regulation of dTph1 activity by QTL analysis in recombinant inbred lines of the mutator strain W138 and a wild species (P. integrifolia spp.
View Article and Find Full Text PDFAnimal-mediated pollination is essential in the reproductive biology of many flowering plants and tends to be associated with pollination syndromes, sets of floral traits that are adapted to particular groups of pollinators. The complexity and functional convergence of various traits within pollination syndromes are outstanding examples of biological adaptation, raising questions about their mechanisms and origins. In the genus Petunia, complex pollination syndromes are found for nocturnal hawkmoths (P.
View Article and Find Full Text PDFPlant shoot development depends on the perpetuation of a group of undifferentiated cells in the shoot apical meristem (SAM). In the Petunia mutant hairy meristem (ham), shoot meristems differentiate postembryonically as continuations of the subtending stem. HAM encodes a putative transcription factor of the GRAS family, which acts non-cell-autonomously from L3-derived tissue of lateral organ primordia and stem provasculature.
View Article and Find Full Text PDF