Publications by authors named "Jeroen M Bugter"

The contribution of deubiquitylating enzymes (DUBs) to β-Catenin stabilization in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, and by using an unbiassed screen, we discovered that the DUB USP10 stabilizes β-Catenin specifically in APC-truncated CRC in vitro and in vivo. Mechanistic studies, including in vitro binding together with computational modelling, revealed that USP10 binding to β-Catenin is mediated via the unstructured N-terminus of USP10 and is outcompeted by intact APC, favouring β-catenin degradation.

View Article and Find Full Text PDF

The transmembrane E3 ligases RNF43 and ZNRF3 perform key tumour suppressor roles by inducing endocytosis of members of the Frizzled (FZD) family, the primary receptors for WNT. Loss-of-function mutations in and mediate FZD stabilisation and a WNT-hypersensitive growth state in various cancer types. Strikingly, and mutations are differentially distributed across cancer types, raising questions about their functional redundancy.

View Article and Find Full Text PDF

Mutation-induced activation of WNT-β-catenin signalling is a frequent driver event in human cancer. Sustained WNT-β-catenin pathway activation endows cancer cells with sustained self-renewing growth properties and is associated with therapy resistance. In healthy adult stem cells, WNT pathway activity is carefully controlled by core pathway tumour suppressors as well as negative feedback regulators.

View Article and Find Full Text PDF

Wnt/β-catenin signaling is a primary pathway for stem cell maintenance during tissue renewal and a frequent target for mutations in cancer. Impaired Wnt receptor endocytosis due to loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensitive tumors that are susceptible to anti-Wnt-based therapy. Contrary to this paradigm, we identify a class of RNF43 truncating cancer mutations that induce β-catenin-mediated transcription, despite exhibiting retained Wnt receptor downregulation.

View Article and Find Full Text PDF

Wnt/β-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins.

View Article and Find Full Text PDF