Publications by authors named "Jeroen K J van Houdt"

OXA-427 is a new class D carbapenemase encountered in different species of in a Belgian hospital. To study the dispersal of this gene, we performed a comparative analysis of two plasmids containing the gene, isolated from a strain and an complex strain. The two IncA/C2 plasmids containing share the same backbone; in the strain, however, this plasmid is cointegrated into an IncFIb plasmid, forming a 321-kb megaplasmid with multiple multiresistance regions.

View Article and Find Full Text PDF

Background: Massive parallel sequencing is a powerful tool for variant discovery and genotyping. To reduce costs, sequencing of restriction enzyme based reduced representation libraries can be utilized. This technology is generally referred to as Genotyping By Sequencing (GBS).

View Article and Find Full Text PDF

Premise Of The Study: Nine polymorphic and 12 monomorphic microsatellite loci (simple sequence repeats [SSRs]) were isolated and characterized for the gynodioecious grassland perennial Saxifraga granulata. •

Methods And Results: Based on genomic screening of leaf material of four individuals from four populations, a total of 21 microsatellite primer pairs were designed for S. granulata.

View Article and Find Full Text PDF

Population genetics patterns of marine fish in general and of Southern Ocean fish in particular range from virtual panmixia over ocean-wide scale to deeply fragmented populations. However the causes underlying these different patterns are not properly understood. In this paper, we tested the hypotheses that population connectivity is positively related to a combination of life history traits, namely duration of pelagic larval period and the tendency towards pelagic life style in the adulthood.

View Article and Find Full Text PDF

Illegal, Unreported and Unregulated fishing has had a major role in the overexploitation of global fish populations. In response, international regulations have been imposed and many fisheries have been 'eco-certified' by consumer organizations, but methods for independent control of catch certificates and eco-labels are urgently needed. Here we show that, by using gene-associated single nucleotide polymorphisms, individual marine fish can be assigned back to population of origin with unprecedented high levels of precision.

View Article and Find Full Text PDF

Background: In fish, the most studied production traits in terms of heritability are body weight or growth, stress or disease resistance, while heritability of cortisol levels, widely used as a measure of response to stress, is less studied. In this study, we have estimated heritabilities of two growth traits (body weight and length) and of cortisol response to confinement stress in the European sea bass.

Findings: The F1 progeny analysed (n = 922) belonged to a small effective breeding population with contributions from an unbalanced family structure of just 10 males and 2 females.

View Article and Find Full Text PDF

Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available.

View Article and Find Full Text PDF

An excellent model to elucidate the mechanisms and importance of evolution in the marine environment is the spectral tuning mechanism of the visual pigment in vertebrates. In the sand goby Pomatoschistus minutus (Teleostei; Gobiidae), a distribution-wide study showed that spatial variation at the rhodopsin gene (RH1) matches the characteristics of specific light environments. This match suggests that populations are locally adapted to selective light regimes targeting the RH1 gene.

View Article and Find Full Text PDF

The spectral tuning mechanism of visual pigments is an excellent model to elucidate the mechanisms of adaptive evolution and the importance of selection as an evolutionary force. Therefore, we use a phylogenetic approach to determine whether there is evidence for differential adaptive molecular evolution on the rhodopsin (RH1) gene among closely related 'sand goby' species (Teleostei, Gobiidae). Fragments of the RH1 gene (868 bp) were sequenced and analyzed for nine 'sand goby' species that inhabit different photic environments.

View Article and Find Full Text PDF

Aquatic organisms living in a range of photic environments require specific mechanisms to tune their visual pigments. Maximum absorbance (lambda(max)) of retinal rods in populations of the marine demersal sand goby, (Pomatoschistus minutus; Gobiidae, Teleostei) correlates with the local optic environment. It has been shown that this is not regulated through a physiological response by exchanging the rhodopsin chromophore.

View Article and Find Full Text PDF

Three measures of divergence, estimated at nine putatively neutral microsatellite markers, 14 quantitative traits, and seven quantitative trait loci (QTL) were compared in eight populations of the three-spined stickleback (Gasterosteus aculeatus L.) living in the Scheldt river basin (Belgium). Lowland estuarine and polder populations were polymorphic for the number of lateral plates, whereas upland freshwater populations were low-plated.

View Article and Find Full Text PDF