Publications by authors named "Jeroen J T Otten"

Macrophage infiltration and accumulation in the atherosclerotic lesion are associated with plaque progression and instability. Depletion of macrophages from the lesion might provide valuable insights into plaque stabilization processes. Therefore, we assessed the effects of systemic and local macrophage depletion on atherogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Some heart disease risk factors can change how a type of blood cell called monocytes reacts to infections.
  • Researchers studied these cells from patients with heart disease and found that higher blood pressure makes monocytes less responsive to infection signals.
  • A potential new drug, MW-STK33-97, might help improve how these cells react when faced with infections in patients with high blood pressure.
View Article and Find Full Text PDF

During plaque progression, inflammatory cells progressively accumulate in the adventitia, paralleled by an increased presence of leaky vasa vasorum. We here show that next to vasa vasorum, also the adventitial lymphatic capillary bed is expanding during plaque development in humans and mouse models of atherosclerosis. Furthermore, we investigated the role of lymphatics in atherosclerosis progression.

View Article and Find Full Text PDF

Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches.

View Article and Find Full Text PDF

Background: Variations in the blood coagulation activity, determined genetically or by medication, may alter atherosclerotic plaque progression, by influencing pleiotropic effects of coagulation proteases. Published experimental studies have yielded contradictory findings on the role of hypercoagulability in atherogenesis. We therefore sought to address this matter by extensively investigating the in vivo significance of genetic alterations and pharmacologic inhibition of thrombin formation for the onset and progression of atherosclerosis, and plaque phenotype determination.

View Article and Find Full Text PDF
Article Synopsis
  • Leukocyte chemotaxis plays a key role in the formation and progression of atherosclerosis, influenced by G-protein-coupled receptors and GRK2.
  • A study on LDL receptor-deficient mice with a partial deficiency of GRK2 showed a significant reduction in plaque development and changes in immune cell composition, indicating myeloid cells as crucial players in this process.
  • The research suggests that targeting hematopoietic GRK2 could be a potential strategy for preventing the advancement of atherosclerosis.
View Article and Find Full Text PDF