Nodulation factor (NF) signal transduction in the legume-rhizobium symbiosis involves calcium oscillations that are instrumental in eliciting nodulation. To date, Ca2+ spiking has been studied exclusively in the intracellular bacterial invasion of growing root hairs in zone I. This mechanism is not the only one by which rhizobia gain entry into their hosts; the tropical legume Sesbania rostrata can be invaded intercellularly by rhizobia at cracks caused by lateral root emergence, and this process is associated with cell death for formation of infection pockets.
View Article and Find Full Text PDFBackground: Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast-growing, submergence-tolerant tropical legume on which A.
View Article and Find Full Text PDFThe tropical legume Sesbania rostrata provides its microsymbiont Azorhizobium caulinodans with versatile invasion strategies to allow nodule formation in temporarily flooded habitats. In aerated soils, the bacteria enter via the root hair curling mechanism. Submergence prevents this epidermal invasion by accumulation of inhibiting concentrations of ethylene and, under these conditions, the bacterial colonization occurs via intercellular cortical infection at lateral root bases.
View Article and Find Full Text PDFAquatic nodulation on the tropical legume Sesbania rostrata occurs at lateral root bases via intercellular crack-entry invasion. A gene was identified (Srprx1) that is transiently up-regulated during the nodulation process and codes for a functional class III plant peroxidase. The expression strictly depended on bacterial nodulation factors (NFs) and could be modulated by hydrogen peroxide, a downstream signal for crack-entry invasion.
View Article and Find Full Text PDFMol Plant Microbe Interact
February 2007
Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads.
View Article and Find Full Text PDFUpon submergence, Azorhizobium caulinodans infects the semiaquatic legume Sesbania rostrata via the intercellular crack entry process, resulting in lateral root-based nodules. A gene encoding a gibberellin (GA) 20-oxidase, SrGA20ox1, involved in GA biosynthesis, was transiently up-regulated during lateral root base nodulation. Two SrGA20ox1 expression patterns were identified, one related to intercellular infection and a second observed in nodule meristem descendants.
View Article and Find Full Text PDF