is a gram negative, facultative, intracellular bacterial pathogen that constitutes a substantial threat to human and animal health. can replicate in a variety of tissues and can induce immune responses that alter host metabolite availability. Here, mice were infected with and murine spleens, livers, and female reproductive tracts were analyzed by GC-MS to determine tissue-specific metabolic changes at one-, two- and four- weeks post infection.
View Article and Find Full Text PDFThe impact of vaccine-induced immune responses on host metabolite availability has not been well studied. Here we show that prior vaccination alters the metabolic profile of mice challenged with Brucella melitensis. In particular, glucose levels were reduced in vaccinated mice in an antibody-dependent manner.
View Article and Find Full Text PDFUnlabelled: Brucellosis, caused by the bacterium , poses a significant global threat to both animal and human health. Although commercial live vaccines including S19, RB51, and Rev1 are available for animals, their unsuitability for human use and incomplete efficacy in animals necessitate the further study of vaccine-mediated immunity to . In this study, we employed B-cell depletion, as well as immunodeficient and transgenic mouse models, to comprehensively investigate the roles of B cells, antigen uptake and presentation, antibody production, and class switching in the context of S19-mediated immunity against brucellosis.
View Article and Find Full Text PDFPLoS Pathog
September 2023
Brucellosis, caused by facultative, intracellular Brucella spp., often results in chronic and/or lifelong infection. Therefore, Brucella must employ mechanisms to subvert adaptive immunity to cause chronic infection.
View Article and Find Full Text PDFBrucellosis is a globally significant zoonotic disease. Human patients with brucellosis develop recurrent fever and focal complications, including arthritis and neurobrucellosis. The current study investigated the role of innate lymphoid cells (ILCs) in the pathogenesis of focal brucellosis caused by Brucella melitensis.
View Article and Find Full Text PDFBrucellosis is a zoonotic disease that causes significant negative impacts on the animal industry and affects over half a million people worldwide every year. The limited safety and efficacy of current animal brucellosis vaccines, combined with the lack of a licensed human brucellosis vaccine, have led researchers to search for new vaccine strategies to combat the disease. To this end, the present research aimed to evaluate the safety and efficacy of a green vaccine candidate that combines S19 smooth lipopolysaccharide (sLPS) with Quillaja saponin (QS) or QS-Xyloglucan mix (QS-X) against mucosal brucellosis in BALB/C mice.
View Article and Find Full Text PDFNeonatal meningitis-associated Escherichia coli (NMEC) is among the leading causes of bacterial meningitis and sepsis in newborn infants. Several virulence factors have been identified as common among NMEC, and have been shown to play an important role in the development of bacteremia and/or meningitis. However, there is significant variability in virulence factor expression between NMEC isolates, and relatively little research has been done to assess the impact of variable virulence factor expression on immune cell activation and the outcome of infection.
View Article and Find Full Text PDFBrucellosis is one of the most common global zoonoses and is caused by facultative intracellular bacteria of the genus Brucella. Numerous studies have found that MyD88 signaling contributes to protection against Brucella; however, the underlying mechanism has not been entirely defined. Here, we show that MyD88 signaling in hematopoietic cells contributes both to inflammation and to control of Brucella melitensis infection .
View Article and Find Full Text PDFNeonatal meningitis-associated Escherichia coli (NMEC) is a leading cause of sepsis and meningitis in newborn infants. Neonates are known to have impaired inflammasome activation and interleukin (IL)-1 production. However, it is unknown what role this plays in the context of NMEC infection.
View Article and Find Full Text PDFPneumonic plague, caused by , is a rapidly progressing bronchopneumonia involving focal bacterial growth, neutrophilic congestion, and alveolar necrosis. Within a short time after inhalation of , inflammatory cytokines are expressed via the Toll/interleukin-1 (IL-1) adaptor myeloid differentiation primary response 88 (MyD88), which facilitates the primary lung infection. We previously showed that lacking the 102-kb chromosomal pigmentation locus () is unable to cause inflammatory damage in the lungs, whereas the wild-type (WT) strain induces the toxic MyD88 pulmonary inflammatory response.
View Article and Find Full Text PDFspp. are facultative intracellular bacteria notorious for their ability to induce a chronic, and often lifelong, infection known as brucellosis. To date, no licensed vaccine exists for prevention of human disease, and mechanisms underlying chronic illness and immune evasion remain elusive.
View Article and Find Full Text PDFBrucellosis, caused by the intracellular bacterial pathogen Brucella, is a globally important zoonotic disease for which arthritis is the most common focal complication in humans. Wild-type mice infected systemically with Brucella typically do not exhibit arthritis, but mice lacking IFN-γ develop arthritis regardless of the route of Brucella infection. Here, we investigated mechanisms by which IFN-γ suppresses Brucella-induced arthritis.
View Article and Find Full Text PDFBrucellosis, caused by the intracellular bacterial pathogen , is a zoonotic disease for which arthritis is the most common focal complication in humans. Here we investigated the role of inflammasomes and their effectors, including interleukin-1 (IL-1), IL-18, and pyroptosis, on inflammation and control of infection during -induced arthritis. Early in infection, both caspase-1 and caspase-11 were found to initiate joint inflammation and proinflammatory cytokine production.
View Article and Find Full Text PDFis a highly infectious intracellular bacterium that causes the potentially fatal disease tularemia. We used mice with conditional MyD88 deficiencies to investigate cellular and molecular mechanisms by which MyD88 restricts type A infection. -induced weight loss was predominately dependent on MyD88 signaling in nonhematopoietic cells.
View Article and Find Full Text PDFspp. are facultative intracellular Gram-negative bacteria that cause the zoonotic disease brucellosis, one of the most common global zoonoses. Osteomyelitis, arthritis, and musculoskeletal inflammation are common focal complications of brucellosis in humans; however, wild-type (WT) mice infected systemically with conventional doses of do not develop these complications.
View Article and Find Full Text PDFBrucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection.
View Article and Find Full Text PDFBackground: Brucella species are facultative intracellular gram-negative bacteria that cause brucellosis, a common global zoonosis. Infection of the joints is the most common focal complication of brucellosis in humans. The purpose of this study was to identify mediators of focal inflammation during brucellosis.
View Article and Find Full Text PDFActivation of the innate immune system can enhance resistance to a variety of bacterial and viral infections. In situations where the etiological agent of disease is unknown, such as a bioterror attack, stimulation of innate immunity may be particularly useful as induced immune responses are often capable of providing protection against a broad range of pathogens. In particular, the threat of an intentional release of a highly virulent bacterial pathogen that is either intrinsically resistant to antibiotics, or has been weaponized via the introduction of antibiotic resistance, makes immunopotentiation an attractive complementary or alternative strategy to enhance resistance to bacterial biothreat agents.
View Article and Find Full Text PDFFrancisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (> 30%).
View Article and Find Full Text PDFFrancisella tularensis is a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response to F. tularensis infection, the vast majority of work has been conducted using attenuated strains of Francisella that do not cause disease in humans.
View Article and Find Full Text PDFspp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection.
View Article and Find Full Text PDFHuman brucellosis exhibits diverse pathological manifestations that can affect almost any organ. In particular, osteoarticular complications are the most common focal manifestation of brucellosis and occur in 40-80% of patients. In immunocompetent mice, Brucella replication is generally restricted to the spleen, liver, and to a lesser extent, LNs, thereby limiting their use for study of focal inflammation often found in brucellosis.
View Article and Find Full Text PDFPulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F.
View Article and Find Full Text PDFNatural killer (NK) cells and dendritic cells (DCs) have been shown to link the innate and adaptive immune systems. Likewise, a new innate cell subset, interferon-producing killer DCs (IKDCs), shares phenotypic and functional characteristics with both DCs and NK cells. Here, we show IKDCs play an essential role in the resolution of experimental autoimmune encephalomyelitis (EAE) upon treatment with the tolerizing agent, myelin oligodendrocyte glycoprotein (MOG), genetically fused to reovirus protein σ1 (termed MOG-pσ1).
View Article and Find Full Text PDFZoonotic transmission of brucellosis often results from exposure to Brucella-infected livestock, feral animals, or wildlife or frequently via consumption of unpasteurized milk products or raw meat. Since natural infection of humans often occurs by the oral route, mucosal vaccination may offer a means to confer protection for both mucosal and systemic tissues. Significant efforts have focused on developing a live brucellosis vaccine, and deletion of the znuA gene involved in zinc transport has been found to attenuate Brucella abortus.
View Article and Find Full Text PDF