Plasmonic nanostructures exhibiting high optical nonlinearities are widely used in the rapidly growing modern nanotechnology of nonlinear optics including biomedical applications due to their tunable plasmonic behavior. In this work, we investigate the nonlinear optical properties of uniformly distributed Au nanoparticles (NPs) embedded in pre-synthesized sodium-zinc borate glass by the well-known ion-exchange technique for optical limiting (OL) applications. Various techniques such as optical absorption spectroscopy, x-ray photoelectron spectroscopy, Transmission Electron Microscope (TEM), Photoluminescence, Time of Flight secondary mass spectroscopy and the Z scan technique were used for the characterization of these NPs.
View Article and Find Full Text PDF