Publications by authors named "Jernej Murn"

While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examine interspecies differences in RNA-protein interactions using the conserved neuronal RNA-binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse.

View Article and Find Full Text PDF
Article Synopsis
  • Aluminum exposure halts root growth by activating a DNA damage response pathway, particularly involving the transcription factor SOG1, which leads to root cell death and differentiation.
  • Transcriptomic studies have identified targets regulated by SOG1, revealing that the transcription factor ERF115 plays a crucial role in transitioning roots from active growth to terminal differentiation when exposed to aluminum.
  • The research indicates that ERF115, along with similar proteins, is essential for the root's response to aluminum toxicity, highlighting a conserved mechanism across different plant species.
View Article and Find Full Text PDF

How RNA-binding proteins (RBPs) convey regulatory instructions to the core effectors of RNA processing is unclear. Here, we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins.

View Article and Find Full Text PDF

While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examined interspecies differences in RNA-protein interactions using the conserved neuronal RNA binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are key regulators of gene expression, but how RBPs convey regulatory instructions to the core effectors of RNA processing is unclear. Here we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a deeply conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins.

View Article and Find Full Text PDF

Mechanistic target of rapamycin (mTOR) is a protein kinase that integrates multiple inputs to regulate anabolic cellular processes. For example, mTOR complex 1 (mTORC1) has key functions in growth control, autophagy, and metabolism. However, much less is known about the signaling components that act downstream of mTORC1 to regulate cellular morphogenesis.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks.

View Article and Find Full Text PDF
Article Synopsis
  • - Cell fate commitment involves changes in chromatin structure and the function of specific transcription factors, with the chromatin assembly factor-1 (CAF-1) playing a crucial role in managing chromatin organization during DNA replication.
  • - Suppressing CAF-1 leads to fast differentiation of myeloid stem and progenitor cells, resulting in a mixed lineage state, suggesting its significance in maintaining lineage identity.
  • - CAF-1 helps preserve lineage fidelity by regulating chromatin accessibility at certain sites and controlling the binding of the ELF1 transcription factor, which can influence how cells commit to specific fates.
View Article and Find Full Text PDF

Correct orchestration of nervous system development is a profound challenge that involves coordination of complex molecular and cellular processes. Mechanistic target of rapamycin (mTOR) signaling is a key regulator of nervous system development and synaptic function. The mTOR kinase is a hub for sensing inputs including growth factor signaling, nutrients and energy levels.

View Article and Find Full Text PDF

An expanding repertoire of histone variants and specialized histone chaperone partners showcases the versatility of nucleosome assembly during different cellular processes. Recent research has suggested an integral role of nucleosome assembly pathways in both maintaining cell identity and influencing cell fate decisions during development and normal homeostasis. Mutations and altered expression profiles of histones and corresponding histone chaperone partners are associated with developmental defects and cancer.

View Article and Find Full Text PDF

Although high-throughput RNA sequencing (RNA-seq) has greatly advanced small non-coding RNA (sncRNA) discovery, the currently widely used complementary DNA library construction protocol generates biased sequencing results. This is partially due to RNA modifications that interfere with adapter ligation and reverse transcription processes, which prevent the detection of sncRNAs bearing these modifications. Here, we present PANDORA-seq (panoramic RNA display by overcoming RNA modification aborted sequencing), employing a combinatorial enzymatic treatment to remove key RNA modifications that block adapter ligation and reverse transcription.

View Article and Find Full Text PDF

In 1959, while analysing the bacterial flagellar proteins, Ambler and Rees observed an unknown species of amino acid that they eventually identified as methylated lysine. Over half a century later, protein methylation is known to have a regulatory role in many essential cellular processes that range from gene transcription to signal transduction. However, the road to this now burgeoning research field was obstacle-ridden, not least because of the inconspicuous nature of the methyl mark itself.

View Article and Find Full Text PDF

Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance.

View Article and Find Full Text PDF

Unkempt is an evolutionarily conserved RNA-binding protein that regulates translation of its target genes and is required for the establishment of the early bipolar neuronal morphology. Here we determined the X-ray crystal structure of mouse Unkempt and show that its six CCCH zinc fingers (ZnFs) form two compact clusters, ZnF1-3 and ZnF4-6, that recognize distinct trinucleotide RNA substrates. Both ZnF clusters adopt a similar overall topology and use distinct recognition principles to target specific RNA sequences.

View Article and Find Full Text PDF

Cellular morphology is an essential determinant of cellular function in all kingdoms of life, yet little is known about how cell shape is controlled. Here we describe a molecular program that controls the early morphology of neurons through a metazoan-specific zinc finger protein, Unkempt. Depletion of Unkempt in mouse embryos disrupts the shape of migrating neurons, while ectopic expression confers neuronal-like morphology to cells of different nonneuronal lineages.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2.

View Article and Find Full Text PDF

Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity.

View Article and Find Full Text PDF

Fragile X syndrome, a common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein FMRP. FMRP is present predominantly in the cytoplasm, where it regulates translation of proteins that are important for synaptic function. We identify FMRP as a chromatin-binding protein that functions in the DNA damage response (DDR).

View Article and Find Full Text PDF

Microcephaly is a neurodevelopmental disorder causing significantly reduced cerebral cortex size. Many known microcephaly gene products localize to centrosomes, regulating cell fate and proliferation. Here, we identify and characterize a nuclear zinc finger protein, ZNF335/NIF-1, as a causative gene for severe microcephaly, small somatic size, and neonatal death.

View Article and Find Full Text PDF

Hyperactivation of the PI 3-kinase/AKT pathway is a driving force of many cancers. Here we identify the AKT-inactivating phosphatase PHLPP1 as a prostate tumor suppressor. We show that Phlpp1-loss causes neoplasia and, on partial Pten-loss, carcinoma in mouse prostate.

View Article and Find Full Text PDF

Background: The B cell antigen receptor (BCR) is a signaling complex that mediates the differentiation of stage-specific cell fate decisions in B lymphocytes. While several studies have shown differences in signal transduction components as being key to contrasting phenotypic outcomes, little is known about the differential BCR-triggered gene transcription downstream of the signaling cascades.

Results: Here we define the transcriptional changes that underlie BCR-induced apoptosis and proliferation of immature and mature B cells, respectively.

View Article and Find Full Text PDF

B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2).

View Article and Find Full Text PDF

New platelet glycoprotein IIb/IIIa (GP IIb/IIIa, integrin alpha(IIb)beta3) antagonists were prepared on a 2H-1,4-benzoxazine-3(4H)-one scaffold. Their anti-aggregatory activities in human platelet rich plasma and their affinity towards alpha(IIb)beta3 and alpha(V)beta3 integrins were assessed. Various substitution positions and side chain variations were studied.

View Article and Find Full Text PDF

Although several lines of evidence support a role for serine proteases in apoptosis, little is known about the mechanisms involved. In the present study, we have examined the apoptosis-inducing potential and dissected the death-signalling pathways of N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and N-tosyl-L-lysine chloromethyl ketone (TLCK), inhibitors of chymotrypsin- and trypsin-like proteases, respectively. Our results designate two distinct roles for serine proteases.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm6o271sarg3977kkmk5lt7cqg3e5f8qq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once