Micromachines (Basel)
April 2023
Laser microstructuring has been studied extensively in the last decades due to its versatile, contactless processing and outstanding precision and structure quality on a wide range of materials. A limitation of the approach has been identified in the utilization of high average laser powers, with scanner movement fundamentally limited by laws of inertia. In this work, we apply a nanosecond UV laser working in an intrinsic pulse-on-demand mode, ensuring maximal utilization of the fastest commercially available galvanometric scanners at scanning speeds from 0 to 20 m/s.
View Article and Find Full Text PDFShock wave visual detection was traditionally performed using streak cameras, limited to homogeneous shock wave emission, with the corresponding shock wave pressure measurements available at rather large distances or numerically estimated through equation of state for water. We demonstrate a multi-frame multi-exposure shock wave velocity measurement technique for all in-plane directions of propagation, based on custom-built illumination system allowing multiple illumination pulses within each frame at multi-MHz frame rates and at up to 200 MHz illumination pulse repetition frequency at sub-nanosecond pulse durations. The measurements are combined and verified using a fiber-optic probe hydrophone, providing independent shock wave pressure and time-of-flight measurements, creating a novel all-optical measurement setup.
View Article and Find Full Text PDFThe intermediate pulse duration regime between typical ultra-short and nanosecond pulses has been investigated using MHz-range bursts of 70 ps pulses emitted from a custom-made fiber laser source. The goal of this study was to observe and understand the processes involved during laser ablation on the timescales from picoseconds to nanoseconds, relevant due to pulses in bursts. We developed material processing approaches that enable similar behaviour as single 70 ps pulse ablation to ultra-short pulses in terms of quality and burst-mode behaviour like nanosecond pulses in terms of efficiency.
View Article and Find Full Text PDF