Fish fins are remarkable devices of propulsion. Fin morphology is intimately linked to locomotor performance, and hence to behaviours that influence fitness, such as foraging and predator avoidance. This foreshadows a connection between fin morphology and variation in predation risk.
View Article and Find Full Text PDFInducible defences allow prey to increase survival chances when predators are present while avoiding unnecessary costs in their absence. Many studies report considerable inter-individual variation in inducible defence expression, yet what underlies this variation is poorly understood. A classic vertebrate example of a predator-induced morphological defence is the increased body depth in crucian carp (Carassius carassius), which reduces the risk of predation from gape-size limited predators.
View Article and Find Full Text PDFPredation risk is often invoked to explain variation in stress responses. Yet, the answers to several key questions remain elusive, including the following: (1) how predation risk influences the evolution of stress phenotypes, (2) the relative importance of environmental versus genetic factors in stress reactivity and (3) sexual dimorphism in stress physiology. To address these questions, we explored variation in stress reactivity (ventilation frequency) in a post-Pleistocene radiation of live-bearing fish, where Bahamas mosquitofish (Gambusia hubbsi) inhabit isolated blue holes that differ in predation risk.
View Article and Find Full Text PDFPredator-inducible defenses constitute a widespread form of adaptive phenotypic plasticity, and such defenses have recently been suggested linked with the neuroendocrine system. The neuroendocrine system is a target of endocrine disruptors, such as psychoactive pharmaceuticals, which are common aquatic contaminants. We hypothesized that exposure to an antidepressant pollutant, fluoxetine, influences the physiological stress response in our model species, crucian carp, affecting its behavioral and morphological responses to predation threat.
View Article and Find Full Text PDFMost animals are visually oriented, and their eyes provide their 'window to the world'. Eye size correlates positively with visual performance, because larger eyes can house larger pupils that increase photon catch and contrast discrimination, particularly under dim light, which have positive effects on behaviours that enhance fitness, including predator avoidance and foraging. Recent studies have linked predation risk to selection for larger eyes and pupils, and such changes should be of importance for the majority of teleost fishes as they have a pupil that is fixed in size (eyes lack a pupillary sphincter muscle) and, hence, do not respond to changes in light conditions.
View Article and Find Full Text PDFMost animals constitute potential prey and must respond appropriately to predator-mediated stress in order to survive. Numerous prey also adaptively tailor their response to the prevailing level of risk and stress imposed by their natural enemies, i.e.
View Article and Find Full Text PDFUsing 10 polymorphic microsatellites and 1251 individual samples (some dating back to the early 1980s), genetic structure and effective population size in all native and introduced Swedish populations of the European wels catfish or Silurus glanis were studied. Levels of genetic variability and phylogeographic relationships were compared with data from a previous study of populations in other parts of Europe. The genetically distinct Swedish populations displayed comparably low levels of genetic variability and according to one-sample estimates based on linkage disequilibrium and sib ship-reconstruction, current local effective population sizes were lower than minimum levels recommended for short-term genetic conservation.
View Article and Find Full Text PDFCrustacean copepods in high-latitude lakes frequently alter their pigmentation facultatively to defend themselves against prevailing threats, such as solar ultraviolet radiation (UVR) and visually oriented predators. Strong seasonality in those environments promotes phenotypic plasticity. To date, no one has investigated whether low-latitude copepods, experiencing continuous stress from UVR and predation threats, exhibit similar inducible defences.
View Article and Find Full Text PDFNumerous species adopt inducible defence strategies; that is, they have phenotypically plastic traits that decrease the risk of capture and consumption by potential predators. The benefits of expressing alternative phenotypes in high- vs. low-risk environments are well documented.
View Article and Find Full Text PDFSpecies integrity can be challenged, and even eroded, if closely related species can hybridize and produce fertile offspring of comparable fitness to that of parental species. The maintenance of newly diverged or closely related species therefore hinges on the establishment and effectiveness of pre- and/or post-zygotic reproductive barriers. Ecological selection, including predation, is often presumed to contribute to reduced hybrid fitness, but field evidence for a predation cost to hybridization remains elusive.
View Article and Find Full Text PDFStudies of predator-mediated selection on behaviour are critical for our understanding of the evolution and maintenance of behavioural diversity in natural populations. Consistent individual differences in prey behaviour, especially in the propensity to take risks ("boldness"), are widespread in the animal kingdom. Theory predicts that individual behavioural types differ in a cost-benefit trade-off where bolder individuals benefit from greater access to resources while paying higher predation-risk costs.
View Article and Find Full Text PDFAlthough migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags to record the migration of individual roach (Rutilus rutilus), a partially migratory fish, in the wild following exposure to manipulation of direct (predator presence/absence) and indirect (high/low roach density) perceived predation risk in experimental mesocosms.
View Article and Find Full Text PDF