Publications by authors named "Jeri D Barak"

Unlabelled: The interplay between plant hosts, phytopathogenic bacteria, and enteric human pathogens in the phyllosphere has consequences for human health. has been known to take advantage of phytobacterial infection to increase its success on plants, but there is little knowledge of additional factors that may influence the relationship between enteric pathogens and plant disease. In this study, we investigated the role of humidity and the extent of plant disease progression on colonization of plants.

View Article and Find Full Text PDF

The physiology of plant hosts can be dramatically altered by phytopathogens. Xanthomonas hortorum pv. gardneri is one such pathogen that creates an aqueous niche within the leaf apoplast by manipulating the plant via the transcription activator-like effector AvrHah1.

View Article and Find Full Text PDF

Hemipteran insects are ubiquitous inhabitants of the phyllosphere. Changes in microbial phyllosphere communities have recently been demonstrated following infestation by Macrosteles quadrilineatus (Aster Leafhopper). Although epiphytic Salmonella enterica populations naturally decline in the phyllosphere of plants, M.

View Article and Find Full Text PDF

Salmonella enterica is ubiquitous in the plant environment, persisting in the face of UV stress, plant defense responses, desiccation, and nutrient limitation. These fluctuating conditions of the leaf surface result in S. enterica population decline.

View Article and Find Full Text PDF

The human enteric bacterial pathogen Salmonella enterica causes approximately 1.35 million cases of food borne illnesses annually in the United States. Of these salmonellosis cases, almost half are derived from the consumption of fresh, raw produce.

View Article and Find Full Text PDF

Enteric human pathogens such as are typically studied in the context of their animal hosts, but it has become apparent that these bacteria spend a significant portion of their life cycle on plants. survives the numerous stresses common to a plant niche, including defense responses, water and nutrient limitation, and exposure to UV irradiation leading to an increased potential for human disease. In fact, is estimated to cause over one million cases of foodborne illness each year in the United States with 20% of those cases resulting from consumption of contaminated produce.

View Article and Find Full Text PDF

The human enteric pathogen leads a cross-kingdom lifestyle, actively colonizing and persisting on plants in between animal hosts. One of the questions that arises from this dual lifestyle is how is able to adapt to such divergent hosts. Metabolic pathways required for animal colonization and virulence have been previously identified, but the metabolism of this bacterium on plants is poorly understood.

View Article and Find Full Text PDF

Multiple species of cause bacterial spot of tomato (BST) and pepper. We sequenced five strains isolated from three continents (Africa, Asia, and South America) to provide a set of representative genomes with temporal and geographic diversity. LMG strains 667, 905, 909, and 933 were pathogenic on tomato and pepper, except LMG 918 elicited a hypersensitive reaction (HR) on tomato.

View Article and Find Full Text PDF

Increasing evidence indicates that despite exposure to harsh environmental stresses, Salmonella enterica successfully persists on plants, utilizing fresh produce as a vector to animal hosts. Among the important S. enterica plant colonization factors are those involved in biofilm formation.

View Article and Find Full Text PDF

Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities.

View Article and Find Full Text PDF

Phytophagous insects can encounter Salmonella enterica on contaminated plant surfaces and transmit externally adhered and internalized bacteria on and among leaves. Excretion of ingested S. enterica by the leafhopper Macrosteles quadrilineatus has been previously reported; however, the sites of persistence of ingested bacteria remain undetermined.

View Article and Find Full Text PDF

Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains.

View Article and Find Full Text PDF

Taxonomic Status: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas euvesicatoria, Xanthomonas vesicatoria, Xanthomonas perforans and Xanthomonas gardneri.

Microbiological Properties: Gram-negative, rod-shaped bacterium, aerobic, motile, single polar flagellum.

Host Range: Causes bacterial spot disease on plants belonging to the Solanaceae family, primarily tomato (Solanum lycopersicum), pepper (Capsicum annuum) and chilli peppers (Capsicum frutescens).

View Article and Find Full Text PDF

Several pest insects of human and livestock habitations are known as vectors of Salmonella enterica; however, the role of plant-feeding insects as vectors of S. enterica to agricultural crops remains unexamined. Using a hemipteran insect pest-lettuce system, we investigated the potential for transmission and retention of S.

View Article and Find Full Text PDF

Salmonella enterica rarely grows on healthy, undamaged plants, but its persistence is influenced by bacterial plant pathogens. The interactions between S. enterica, Xanthomonas perforans (a tomato bacterial spot pathogen), and tomato were characterized.

View Article and Find Full Text PDF

Recently, most foodborne illness outbreaks of salmonellosis have been caused by consumption of contaminated fresh produce. Yet, the mechanisms that allow the human pathogen Salmonella enterica to contaminate and grow in plant environments remain poorly described. We examined the effect of feeding by phytophagous insects on survival of S.

View Article and Find Full Text PDF

Unlabelled: Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp.

View Article and Find Full Text PDF

Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants.

View Article and Find Full Text PDF

Contaminated fresh produce has become the number one vector of nontyphoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of the organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aroA mutant had a significant root colonization defect due to a failure to replicate.

View Article and Find Full Text PDF

Dickeya dadantii is a plant-pathogenic bacterium that produces cellulose-containing biofilms, called pellicles, at the air-liquid interface of liquid cultures. D. dadantii pellicle formation appears to be an emergent property dependent upon at least three gene clusters, including cellulose synthesis, type III secretion system (T3SS) and flagellar genes.

View Article and Find Full Text PDF

Nontyphoid salmonellosis caused by Salmonella enterica is the most common bacterial food-borne illness in humans, and fresh produce, including tomatoes, is a common vehicle. Accumulating data indicate that human enteric pathogenic bacteria, including S. enterica, interact actively with plants.

View Article and Find Full Text PDF

Incidences of bacterial foodborne illness caused by ingestion of fresh produce are rising. Instead of this being due to incidental contamination, the animal pathogen Salmonella enterica utilizes specific molecular mechanisms to attach to and colonize plants. This work characterizes two S.

View Article and Find Full Text PDF

Recent outbreaks of gastroenteritis linked to the consumption of fresh produce raise questions about the mechanisms by which human pathogens colonize plants and persist within marketable produce. Neither Salmonella nor Escherichia coli appear to produce enzymes that degrade plant cell walls, therefore it is not yet certain how these bacteria enter plant tissues and spread within them. Similar to plant-associated bacteria, enterics use cellulose and aggregative fimbriae for their attachment to plant surfaces.

View Article and Find Full Text PDF

ABSTRACT Bacterial leafspot of lettuce (BLS), caused by Xanthomonas campes-tris pv. vitians, has become more prevalent in many lettuce-growing areas of the world over the past decade. To gain insight into the nature of these outbreaks, the genetic variation in X.

View Article and Find Full Text PDF

U.S. salmonellosis outbreaks have occurred following consumption of tomato and cantaloupe but not lettuce.

View Article and Find Full Text PDF