Publications by authors named "Jeremy Witzens"

We present both experimental and simulation results for a fully etched, C-band GC fabricated in an 800 nm silicon nitride platform that significantly reduces backreflections. They are minimized by truncating the initial grates, which deflect reflected light at an oblique angle and excite higher-order modes in the tapered waveguide that is filtered out. Insertion losses resulting from this modification of the grating coupler are mitigated by an adaptive redesign of the grates that corrects incurred errors in the generated phase front.

View Article and Find Full Text PDF

Over the last 30 years, group-IV semiconductors have been intensely investigated in the quest for a fundamental direct bandgap semiconductor that could yield the last missing piece of the Si Photonics toolbox: a continuous-wave Si-based laser. Along this path, it has been demonstrated that the electronic band structure of the GeSn/SiGeSn heterostructures can be tuned into a direct bandgap quantum structure providing optical gain for lasing. In this paper, we present a versatile electrically pumped, continuous-wave laser emitting at a near-infrared wavelength of 2.

View Article and Find Full Text PDF

We demonstrate an O-band resonantly enhanced Mach-Zehnder modulator utilizing highly overcoupled resonators with staggered resonance wavelengths that achieves an operating range of 6.6 nm (7.1 nm) with a 1 dB (3 dB) optical modulation amplitude penalty.

View Article and Find Full Text PDF

We demonstrate a flow cytometer in which structured light illumination is used to attribute fluorescent and scattering signals to their excitation wavelength. A suitable multi-color light source emitting structured illumination patterns at 405, 488, 561 and 640 nm is developed based on a silicon nitride photonic integrated circuit and cytometry experiments are conducted with calibration beads. Performance metrics of the novel cytometer are compared with those of a mature, commercial device.

View Article and Find Full Text PDF

Silicon photonics ring resonators in rib waveguide configuration are among the most important components for wavelength-division-multiplexed communication networks. While the rib waveguide enables simple electrical connectivity in microring modulators and add-drop multiplexers, it also results in unacceptable bending losses once the circumference is shrunk below a few micrometers, limiting achievable free spectral ranges and resonant enhancements. We introduce a sub-wavelength tunneling barrier at the critical radius at which the conformally mapped effective index of the slab exceeds that of the waveguide in order to suppress these bending losses, while increasing the resonator's resistance only slightly.

View Article and Find Full Text PDF

We present the design and experimental characterization of a silicon nitride pulse interleaver based on coupled resonator optical waveguide filters. In order to achieve a targeted free spectral range of 1.44 THz, which is large given the reduced optical confinement of the silicon nitride platform, individual ring resonators are designed with tapered waveguides.

View Article and Find Full Text PDF

In this paper a novel opto-electronic Track-and-Hold Amplifier (OE-THA) is presented. The OE-THA can be used as a sampler in a photonic analog-to-digital-converter (ADC). It is fabricated in a silicon photonic 250 nm SiGe BiCMOS technology to allow for monolithic integration of photonic and electronic components.

View Article and Find Full Text PDF

We implement a multi-color laser engine with silicon nitride photonic integrated circuit technology, that combines four fluorophore excitation wavelengths (405 nm, 488 nm, 561 nm, 640 nm) and splits them with variable attenuation among two output fibers used for different microscope imaging modalities. With the help of photonic integrated circuit technology, the volume of the multi-color laser engine's optics is reduced by two orders of magnitude compared to its commercially available discrete optics counterpart. Light multiplexing is implemented by means of a directional coupler based device and variable optical attenuation as well as fiber switching with thermally actuated Mach-Zehnder interferometers.

View Article and Find Full Text PDF

The effect of phase noise introduced by optical sources in spectrally-sliced optically enabled DACs and ADCs is modeled and analyzed in detail. In both data converter architectures, a mode-locked laser is assumed to provide an optical comb whose lines are used to either synthesize or analyze individual spectral slices. While the optical phase noise of the central MLL line as well as of other optical carriers used in the analyzed system architectures have a minor impact on the system performance, the RF phase noise of the MLL fundamentally limits it.

View Article and Find Full Text PDF

Three-dimensional (3D) nano-printing of freeform optical waveguides, also referred to as photonic wire bonding, allows for efficient coupling between photonic chips and can greatly simplify optical system assembly. As a key advantage, the shape and the trajectory of photonic wire bonds can be adapted to the mode-field profiles and the positions of the chips, thereby offering an attractive alternative to conventional optical assembly techniques that rely on technically complex and costly high-precision alignment. However, while the fundamental advantages of the photonic wire bonding concept have been shown in proof-of-concept experiments, it has so far been unclear whether the technique can also be leveraged for practically relevant use cases with stringent reproducibility and reliability requirements.

View Article and Find Full Text PDF

We report on the design, fabrication and testing of three types of coupling structures for hybrid chalcogenide glass GeSbS-Silicon (GeSbS-Si) photonic integrated circuit platforms. The first type is a fully etched GeSbS grating coupler defined directly in the GeSbS film. Coupling losses of 5.

View Article and Find Full Text PDF

We report on the monolithic integration of a new class of reflown silica microtoroid resonators with silicon nanowaveguides fabricated on top of the silica film. Connectivity with other silicon photonics devices is enabled by inversion of the toroid geometry, defined by etching a circular opening rather than a disk in an undercut silica membrane. Intrinsic quality factors of up to 2 million are achieved and several avenues of process improvement are identified that can help attain the higher quality factors (> 10) that are possible in reflown microtoroids.

View Article and Find Full Text PDF

We demonstrate an integrated 8 by 14 Gbps dense wavelength division multiplexed silicon photonics transceiver that makes use of an external mode-locked laser as a light source and a single semiconductor optical amplifier for post-modulation signal amplification. Remaining components necessary for modulation, filtering and (de‑)multiplexing are monolithically integrated in a single chip. In all system experiments, all eight channels are jointly operated with independent data streams in order to include impairments arising out of nonlinear effects inside the SOA while benchmarking the system performance.

View Article and Find Full Text PDF

A hybrid group IV ridge waveguide platform is demonstrated, with potential application across the optical spectrum from ultraviolet to the far infrared wavelengths. The waveguides are fabricated by partial etching of sub-micron ridges in a nanocrystalline diamond thin film grown on top of a silicon wafer. To create vertical confinement, the diamond film is locally undercut by exposing the chip to an isotropic fluorine plasma etch via etch holes surrounding the waveguides, resulting in a mechanically stable suspended air-clad waveguide platform.

View Article and Find Full Text PDF

We present wideband and large free spectral range optical filters with steep passband edges for the selection of adjacent WDM communication channels that can be reliably fabricated with mainstream silicon photonics technology. The devices are based on three cascaded stages of coupled resonator optical waveguides loaded on a common bus waveguide. These stages differ in the number of resonators but are implemented with exactly identical unit cells, comprised of a matched racetrack resonator layout and a uniform spacing between cells.

View Article and Find Full Text PDF

We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested.

View Article and Find Full Text PDF

Based on the single channel characterization of a Silicon Photonics (SiP) transceiver with Semiconductor Optical Amplifier (SOA) and semiconductor Mode-Locked Laser (MLL), we evaluate the optical power budget of a corresponding Wavelength Division Multiplexed (WDM) link in which penalties associated to multi-channel operation and the management of polarization diversity are introduced. In particular, channel cross-talk as well as Cross Gain Modulation (XGM) and Four Wave Mixing (FWM) inside the SOA are taken into account. Based on these link budget models, the technology is expected to support up to 12 multiplexed channels without channel pre-emphasis or equalization.

View Article and Find Full Text PDF

We present a novel resonant Mach-Zehnder modulator whose arms are each loaded with five identical resonators. Size and power consumption are aggressively reduced compared to conventional modulators based on linear phase shifters. At the same time, a large optical bandwidth of 3.

View Article and Find Full Text PDF

We report on the design of Silicon Mach-Zehnder carrier depletion modulators relying on epitaxially grown vertical junction diodes. Unprecedented spatial control over doping profiles resulting from combining local ion implantation with epitaxial overgrowth enables highly linear phase shifters with high modulation efficiency and comparatively low insertion losses. A high average phase shifter efficiency of VπL = 0.

View Article and Find Full Text PDF

We have investigated two novel concepts for the design of transmission lines in travelling wave Mach-Zehnder interferometer based Silicon Photonics depletion modulators overcoming the analog bandwidth limitations arising from cross-talk between signal lines in push-pull modulators and reducing the linear losses of the transmission lines. We experimentally validate the concepts and demonstrate an E/O -3 dBe bandwidth of 16 GHz with a 4V drive voltage (in dual drive configuration) and 8.8 dB on-chip insertion losses.

View Article and Find Full Text PDF

High-performance silicon nitride focusing grating couplers with AlCu/TiN reflectors for a visible wavelength (660 nm) have been designed and fabricated in a standard complementary metal-oxide-semiconductor pilot line. The influence of the bottom oxide cladding thickness on the grating decay length and efficiency is theoretically and experimentally investigated. It is shown how the metal reflector not only increases the efficiency but also allows reduction of the radiated beam size.

View Article and Find Full Text PDF

Silicon nitride is demonstrated as a high performance and cost-effective solution for dense integrated photonic circuits in the visible spectrum. Experimental results for nanophotonic waveguides fabricated in a standard CMOS pilot line with losses below 0.71dB/cm in an aqueous environment and 0.

View Article and Find Full Text PDF

We theoretically investigate a novel scheme to detect target molecule induced, or suppressed, aggregation of nanoparticles. High-Q optical resonators are used to both optically trap gold nanoparticle clusters and to detect their presence via a shift in the resonance wavelength. The well depth of the optical trap is chosen to be relatively low compared to the thermal energy of the nanoparticles, so that trapping of single nanoparticles is marginal and results in a comparatively small wavelength shift.

View Article and Find Full Text PDF

Slot waveguides allow joint confinement of the driving electrical radio frequency field and of the optical waveguide mode in a narrow slot, allowing for highly efficient polymer based interferometers. We show that the optical confinement can be simply explained by a perturbation theoretical approach taking into account the continuity of the electric displacement field. We design phase matched transmission lines and show that their impedance and RF losses can be modeled by an equivalent circuit and linked to slot waveguide properties by a simple set of equations, thus allowing optimization of the device without iterative simulations.

View Article and Find Full Text PDF