Sequence-defined nucleic acids and proteins with internal monomer sequences and arrangement are vital components in the living world, as a result of billions of years of molecular evolution. These natural hierarchical systems have inspired researchers to develop artificial hierarchical materials that can mimic similar functions such as replication, recognition, and information storage. In this Outlook, we describe the conceptual introduction of hierarchy into the design of metal-organic framework (MOF) materials.
View Article and Find Full Text PDFSophisticated chemical processes widely observed in biological cells require precise apportionment regulation of building units, which inspires researchers to develop tailorable architectures with controllable heterogeneity for replication, recognition and information storage. However, it remains a substantial challenge to endow multivariate materials with internal sequences and controllable apportionments. Herein, we introduce a novel strategy to manipulate the apportionment of functional groups in multivariate metal-organic frameworks (MTV-MOFs) by preincorporating interlocked linkers into framework materials.
View Article and Find Full Text PDFThe production of two-dimensional (2D) ultrathin metal-organic framework (MOF) nanosheets with functionalized surfaces is significant for extending their applications. To date, no protocol has been developed yet to solve this problem. Herein, we report a facile, mild, and efficient method to produce 2D monolayer MOF nanosheets with hydrophobic surfaces from layer-pillared 3D MOFs.
View Article and Find Full Text PDF