Publications by authors named "Jeremy Wideman"

Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing.

View Article and Find Full Text PDF

Comparative genomics is a useful approach for hypothesis generation for future functional investigations at the bench. However, most bench biologists shy away from computational methods. Here we reintroduce the simple but extremely effective Reciprocal Best Hit method for inferring protein orthologues.

View Article and Find Full Text PDF

Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g.

View Article and Find Full Text PDF

Mitochondrial cristae architecture is crucial for optimal respiratory function of the organelle. Cristae shape is maintained in part by the mitochondrial contact site and cristae organizing system (MICOS) complex. While MICOS is required for normal cristae morphology, the precise mechanistic role of each of the seven human MICOS subunits, and how the complex coordinates with other cristae-shaping factors, has not been fully determined.

View Article and Find Full Text PDF

The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging.

View Article and Find Full Text PDF

Mitochondrial cristae architecture is crucial for optimal respiratory function of the organelle. Cristae shape is maintained in part by the mitochondrial inner membrane-localized MICOS complex. While MICOS is required for normal cristae morphology, the precise mechanistic role of each of the seven human MICOS subunits, and how the complex coordinates with other cristae shaping factors, has not been fully determined.

View Article and Find Full Text PDF

Cells maintain the specific lipid composition of distinct organelles by vesicular transport as well as non-vesicular lipid trafficking via lipid transport proteins. Oxysterol-binding proteins (OSBPs) are a family of lipid transport proteins that transfer lipids at various membrane contact sites (MCSs). OSBPs have been extensively investigated in human and yeast cells where 12 have been identified in and 7 in .

View Article and Find Full Text PDF

Relatively little is known about ATP synthase structure in protists, and the investigated ones exhibit divergent structures distinct from yeast or animals. To clarify the subunit composition of ATP synthases across all eukaryotic lineages, we used homology detection techniques and molecular modeling tools to identify an ancestral set of 17 ATP synthase subunits. Most eukaryotes possess an ATP synthase comparable to those of animals and fungi, while some have undergone drastic divergence (e.

View Article and Find Full Text PDF

Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria.

View Article and Find Full Text PDF

Animals, fungi, and their closest protist relatives comprise the clade Opisthokonta. Although they are comparatively closely related, animals and fungi have diverged greatly from one another. A new study demonstrates that the genomic features that are characteristic of animals and fungi arose even before the origin of these two kingdoms.

View Article and Find Full Text PDF

The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin.

View Article and Find Full Text PDF

Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species.

View Article and Find Full Text PDF

The voltage-dependent anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC protein, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth.

View Article and Find Full Text PDF

The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited.

View Article and Find Full Text PDF

Background: The supergroup Euglenozoa unites heterotrophic flagellates from three major clades, kinetoplastids, diplonemids, and euglenids, each of which exhibits extremely divergent mitochondrial characteristics. Mitochondrial genomes (mtDNAs) of euglenids comprise multiple linear chromosomes carrying single genes, whereas mitochondrial chromosomes are circular non-catenated in diplonemids, but circular and catenated in kinetoplastids. In diplonemids and kinetoplastids, mitochondrial mRNAs require extensive and diverse editing and/or trans-splicing to produce mature transcripts.

View Article and Find Full Text PDF

The overarching trend in mitochondrial genome evolution is functional streamlining coupled with gene loss. Therefore, gene acquisition by mitochondria is considered to be exceedingly rare. Selfish elements in the form of self-splicing introns occur in many organellar genomes, but the wider diversity of selfish elements, and how they persist in the DNA of organelles, has not been explored.

View Article and Find Full Text PDF

Evolution has led to a great diversity that ranges from elegant simplicity to ornate complexity. Many complex features are often assumed to be more functional or adaptive than their simpler alternatives. However, in 1999, Arlin Stolzfus published a paper in the Journal of Molecular Evolution that outlined a framework in which complexity can arise through a series of non-adaptive steps.

View Article and Find Full Text PDF

The mitochondrial protein import complexes arose early in eukaryogenesis. Most of the components of the protein import pathways predate the last eukaryotic common ancestor. For example, the carrier-insertase TIM22 complex comprises the widely conserved Tim22 channel core.

View Article and Find Full Text PDF

Many mitochondrial proteins contain N-terminal presequences that direct them to the organelle. The main driving force for their translocation across the inner membrane is provided by the presequence translocase-associated motor (PAM) which contains the J-protein Pam18. Here, we show that in the PAM of the function of Pam18 has been replaced by the non-orthologous euglenozoan-specific J-protein TbPam27.

View Article and Find Full Text PDF

Most eukaryotic microbial diversity is uncultivated, under-studied and lacks nuclear genome data. Mitochondrial genome sampling is more comprehensive, but many phylogenetically important groups remain unsampled. Here, using a single-cell sorting approach combining tubulin-specific labelling with photopigment exclusion, we sorted flagellated heterotrophic unicellular eukaryotes from Pacific Ocean samples.

View Article and Find Full Text PDF

Flaviviruses, including dengue virus and Zika virus, extensively remodel the cellular endomembrane network to generate replication organelles that promote viral genome replication and virus production. However, it remains unclear how these membranes and associated cellular proteins act during the virus cycle. Here, we show that atlastins (ATLs), a subset of ER resident proteins involved in neurodegenerative diseases, have dichotomous effects on flaviviruses-with ATL2 depletion leading to replication organelle defects, and ATL3 depletion to changes in virus production pathways.

View Article and Find Full Text PDF

Euglenozoa comprises euglenids, kinetoplastids, and diplonemids, with each group exhibiting different and highly unusual mitochondrial genome organizations. Although they are sister groups, kinetoplastids and diplonemids have very distinct mitochondrial genome architectures, requiring widespread insertion/deletion RNA editing and extensive -splicing, respectively, in order to generate functional transcripts. The evolutionary history by which these differing processes arose remains unclear.

View Article and Find Full Text PDF

Eukaryotes exhibit a great diversity of cellular and subcellular morphologies, but their basic underlying architecture is fairly constant. All have a nucleus, Golgi, cytoskeleton, plasma membrane, vesicles, ribosomes, and all known lineages but one have mitochondrion-related organelles. Moreover, most eukaryotes undergo processes such as mitosis, meiosis, DNA recombination, and often perform feats such as phagocytosis, and amoeboid and flagellar movement.

View Article and Find Full Text PDF

Insight into the last eukaryotic common ancestor (LECA) is central to any phylogeny-based reconstruction of early eukaryotic evolution. Increasing amounts of data enable such reconstructions, without necessarily providing further insight into what LECA actually was. We consider four possible concepts of LECA: an abstract phylogenetic state, a single cell, a population, and a consortium of organisms.

View Article and Find Full Text PDF