Motivation: Shotgun sequence read data derived from xenograft material contains a mixture of reads arising from the host and reads arising from the graft. Classifying the read mixture to separate the two allows for more precise analysis to be performed.
Results: We present a technique, with an associated tool Xenome, which performs fast, accurate and specific classification of xenograft-derived sequence read data.
Motivation: The de novo assembly of short read high-throughput sequencing data poses significant computational challenges. The volume of data is huge; the reads are tiny compared to the underlying sequence, and there are significant numbers of sequencing errors. There are numerous software packages that allow users to assemble short reads, but most are either limited to relatively small genomes (e.
View Article and Find Full Text PDF