Publications by authors named "Jeremy Van Cleve"

Much research on the evolution of altruism via kin selection, group selection, and reciprocity focuses on the role of a single locus or quantitative trait. Very few studies have explored how linked selection, or selection at loci neighboring an altruism locus, impacts the evolution of altruism. While linked selection can decrease the efficacy of selection at neighboring loci, it might have other effects including promoting selection for altruism by increasing relatedness in regions of low recombination.

View Article and Find Full Text PDF

Evolutionarily stable strategy (ESS) analysis pioneered by Maynard Smith and Price took off in part because it often does not require explicit assumptions about the genetics and demography of a population in contrast to population genetic models. Though this simplicity is useful, it obscures the degree to which ESS analysis applies to populations with more realistic genetics and demography: for example, how does ESS analysis handle complexities such as kin selection, group selection and variable environments when phenotypes are affected by multiple genes? In this paper, I review the history of the ESS concept and show how early uncertainty about the method lead to important mathematical theory linking ESS analysis to general population genetic models. I use this theory to emphasize the link between ESS analysis and the concept of .

View Article and Find Full Text PDF

Immune system evolution is shaped by the fitness costs and trade-offs associated with mounting an immune response. Costs that arise mainly as a function of the magnitude of investment, including energetic and immunopathological costs, are well-represented in studies of immune system evolution. Less well considered, however, are the costs of immune cell plasticity and specialization.

View Article and Find Full Text PDF

Two popular approaches for modeling social evolution, evolutionary game theory and quantitative genetics, ask complementary questions but are rarely integrated. Game theory focuses on evolutionary outcomes, with models solving for evolutionarily stable equilibria, whereas quantitative genetics provides insight into evolutionary processes, with models predicting short-term responses to selection. Here we draw parallels between evolutionary game theory and interacting phenotypes theory, which is a quantitative genetic framework for understanding social evolution.

View Article and Find Full Text PDF

Some form of regeneration occurs in all lifeforms and extends from single-cell organisms to humans. The degree to which regenerative ability is distributed across different taxa, however, is harder to ascertain given the potential for phylogenetic constraint or inertia, and adaptive processes to shape this pattern. Here, we examine the phylogenetic history of regeneration in two groups where the trait has been well-studied: arthropods and reptiles.

View Article and Find Full Text PDF

This article consists of commentaries on a selected group of papers of Marc Feldman published in Theoretical Population Biology from 1970 to the present. The papers describe a diverse set of population-genetic models, covering topics such as cultural evolution, social evolution, and the evolution of recombination. The commentaries highlight Marc Feldman's role in providing mathematically rigorous formulations to explore qualitative hypotheses, in many cases generating surprising conclusions.

View Article and Find Full Text PDF

By consuming and producing environmental resources, organisms inevitably change their habitats. The consequences of such environmental modifications can be detrimental or beneficial not only to the focal organism but also to other organisms sharing the same environment. Social evolution theory has been very influential in studying how social interactions mediated by public 'goods' or 'bads' evolve by emphasizing the role of spatial structure.

View Article and Find Full Text PDF

One of the triumphs of evolutionary biology is the discovery of robust mechanisms that promote the evolution of cooperative behaviors even when cooperation reduces the fertility or survival of cooperators. These mechanisms include, kin selection, reciprocity, and direct benefits to cooperation that are often nonlinear. Though they have been extensively studied separately, investigating the joint action of these mechanisms has been more difficult.

View Article and Find Full Text PDF

How should fitness be measured to determine which phenotype or "strategy" is uninvadable when evolution occurs in a group-structured population subject to local demographic and environmental heterogeneity? Several fitness measures, such as basic reproductive number, lifetime dispersal success of a local lineage, or inclusive fitness have been proposed to address this question, but the relationships between them and their generality remains unclear. Here, we ascertain uninvadability (all mutant strategies always go extinct) in terms of the asymptotic per capita number of mutant copies produced by a mutant lineage arising as a single copy in a resident population ("invasion fitness"). We show that from invasion fitness uninvadability is equivalently characterized by at least three conceptually distinct fitness measures: (i) lineage fitness, giving the average individual fitness of a randomly sampled mutant lineage member; (ii) inclusive fitness, giving a reproductive value weighted average of the direct fitness costs and relatedness weighted indirect fitness benefits accruing to a randomly sampled mutant lineage member; and (iii) basic reproductive number (and variations thereof) giving lifetime success of a lineage in a single group, and which is an invasion fitness proxy.

View Article and Find Full Text PDF

Three recent genome-wide studies in mice and humans have produced the most definitive map to date of genomic imprinting (gene expression that depends on parental origin) by incorporating multiple tissue types and developmental stages. Here, we explore the results of these studies in light of the kinship theory of genomic imprinting, which predicts that imprinting evolves due to differential genetic relatedness between maternal and paternal relatives. The studies produce a list of imprinted genes with around 120-180 in mice and ~100 in humans.

View Article and Find Full Text PDF

In large scale social systems, coordinated or cooperative outcomes become difficult because encounters between kin or repeated encounters between friends are infrequent. Even punishment of noncooperators does not entirely alleviate the dilemma. One important mechanism for achieving cooperative outcomes in such social systems is conformist bias where individuals copy the behavior performed by the majority of their group mates.

View Article and Find Full Text PDF

Inclusive fitness has been the cornerstone of social evolution theory for more than a half-century and has matured as a mathematical theory in the past 20 years. Yet surprisingly for a theory so central to an entire field, some of its connections to evolutionary theory more broadly remain contentious or underappreciated. In this paper, we aim to emphasize the connection between inclusive fitness and modern evolutionary theory through the following fact: inclusive fitness is simply classical Darwinian fitness, averaged over social, environmental and demographic states that members of a gene lineage experience.

View Article and Find Full Text PDF

The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D.

View Article and Find Full Text PDF

Progress in science often begins with verbal hypotheses meant to explain why certain biological phenomena exist. An important purpose of mathematical models in evolutionary research, as in many other fields, is to act as “proof-of-concept” tests of the logic in verbal explanations, paralleling the way in which empirical data are used to test hypotheses. Because not all subfields of biology use mathematics for this purpose, misunderstandings of the function of proof-of-concept modeling are common.

View Article and Find Full Text PDF

Many organisms live in populations structured by space and by class, exhibit plastic responses to their social partners, and are subject to nonadditive ecological and fitness effects. Social evolution theory has long recognized that all of these factors can lead to different selection pressures but has only recently attempted to synthesize how these factors interact. Using models for both discrete and continuous phenotypes, we show that analyzing these factors in a consistent framework reveals that they interact with one another in ways previously overlooked.

View Article and Find Full Text PDF

Animals can often coordinate their actions to achieve mutually beneficial outcomes. However, this can result in a social dilemma when uncertainty about the behavior of partners creates multiple fitness peaks. Strategies that minimize risk ("risk dominant") instead of maximizing reward ("payoff dominant") are favored in economic models when individuals learn behaviors that increase their payoffs.

View Article and Find Full Text PDF

An unresolved controversy regarding social behaviors is exemplified when natural selection might lead to behaviors that maximize fitness at the social-group level but are costly at the individual level. Except for the special case of groups of clones, we do not have a general understanding of how and when group-optimal behaviors evolve, especially when the behaviors in question are flexible. To address this question, we develop a general model that integrates behavioral plasticity in social interactions with the action of natural selection in structured populations.

View Article and Find Full Text PDF

Genomic imprinting is the differential expression of an allele based on the parent of origin. Recent transcriptome-wide evaluations of the number of imprinted genes reveal complex patterns of imprinted expression among developmental stages and cell types. Such data demand a comprehensive evolutionary framework in which to understand the effect of natural selection on imprinted gene expression.

View Article and Find Full Text PDF

Phenotypic switching has been observed in laboratory studies of yeast and bacteria, in which the rate of such switching appears to adjust to match the frequency of environmental changes. Among possible mechanisms of switching are epigenetic influences on gene expression and variation in levels of methylation; thus environmental and/or genetic factors may contribute to the rate of switching. Most previous analyses of the evolution of phenotypic switching have compared exponential growth rates of noninteracting populations, and recombination has been ignored.

View Article and Find Full Text PDF

How phenomena like helping, dispersal, or the sex ratio evolve depends critically on demographic and life-history factors. One phenotype that is of particular interest to biologists is genomic imprinting, which results in parent-of-origin-specific gene expression and thus deviates from the predictions of Mendel's rules. The most prominent explanation for the evolution of genomic imprinting, the kinship theory, originally specified that multiple paternity can cause the evolution of imprinting when offspring affect maternal resource provisioning.

View Article and Find Full Text PDF

Although much previous work describes evolutionary mechanisms that promote or stabilize different social behaviors, we still have little understanding of the factors that drive animal behavior proximately. Here we present a modeling approach to answer this question. Our model rests on motivations to achieve objectives as the proximate determinants of behavior.

View Article and Find Full Text PDF

Uncertain environments pose a tremendous challenge to populations: The selective pressures imposed by the environment can change so rapidly that adaptation by mutation alone would be too slow. One solution to this problem is given by the phenomenon of stochastic phenotype switching, which causes genetically uniform populations to be phenotypically heterogenous. Stochastic phenotype switching has been observed in numerous microbial species and is generally assumed to be an adaptive bet-hedging strategy to anticipate future environmental change.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl5a5m16c3cjs34qrnro0n8gu6urilmg9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once